f-BIHARMONIC MAPS BETWEEN RIEMANNIAN MANIFOLDS

YUAN-JEN CHIANG

Department of Mathematics, University of Mary Washington, Fredericksburg VA 22401, USA

Abstract. We show that if ψ is an f-biharmonic map from a compact Riemannian manifold into a Riemannian manifold with non-positive curvature satisfying a condition, then ψ is an f-harmonic map. We prove that if the f-tension field $\tau_f(\psi)$ of a map ψ of Riemannian manifolds is a Jacobi field and ϕ is a totally geodesic map of Riemannian manifolds, then $\tau_f(\phi \circ \psi)$ is a Jacobi field. We finally investigate the stress f-bienergy tensor, and relate the divergence of the stress f-bienergy of a map ψ of Riemannian manifolds with the Jacobi field of the $\tau_f(\psi)$ of the map.

1. Introduction

Harmonic maps between Riemannian manifolds were first established by Eells and Sampson in 1964. Afterwards, there are two reports and one survey paper by Eells and Lemaire [15–17] about the developments of harmonic maps up to 1988. Chiang, Ratto, Sun and Wolak also studied harmonic and biharmonic maps in [4–9]. f-harmonic maps which generalize harmonic maps, were first introduced by Lichnerowicz [25] in 1970, and were studied by Course [12, 13] recently. The f-harmonic maps relate to the equation of the motion of a continuous system of spins with inhomogeneous neighbor Heisenberg interaction in mathematical physics. Moreover, F-harmonic maps between Riemannian manifolds were first introduced by Ara [1, 2] in 1999, which could be considered as the special cases of f-harmonic maps.

Let $f : (M_1, g) \to (0, \infty)$ be a smooth function. By definition the f-biharmonic maps between Riemannian manifolds are the critical points of f-bienergy

$$E^f_2(\psi) = \frac{1}{2} \int_{M_1} f|\tau_f(\psi)|^2 \, dv$$
where div the volume form determined by the metric g. The f-biharmonic maps between Riemannian manifolds which generalized biharmonic maps by Jiang [20, 21] in 1986, were first studied by Ouakkas, Nasri and Djaâ [27] in 2010.

In section two, we describe the motivation, and review f-harmonic maps and their relationship with F-harmonic maps. In Theorem 3.1, we show that if ψ is an f-biharmonic map from a compact Riemannian manifold into a Riemannian manifold with non-positive curvature satisfying a condition, then ψ is an f-biharmonic map. It is well-known from [18] that if ψ is a harmonic map of Riemannian manifolds and ϕ is a totally geodesic map of Riemannian manifolds, then $\phi \circ \psi$ is harmonic. However, if ψ is f-biharmonic and ϕ is totally geodesic, then $\phi \circ \psi$ is not necessarily f-biharmonic. Instead, we prove in Theorem 3.3 that if the f-tension field $\tau_f(\psi)$ of a smooth map ψ of Riemannian manifolds is a Jacobi field and ϕ is totally geodesic, then $\tau_f(\phi \circ \psi)$ is a Jacobi field. It implies Corollary 3.4 [8] that if ψ is a biharmonic map between Riemannian manifolds and ϕ is totally geodesic, then $\phi \circ \psi$ is a biharmonic map. We finally investigate the stress f-bienergy tensors. If ψ is an f-biharmonic of Riemannian manifolds, then it usually does not satisfy the conservation law for the stress f-bienergy tensor $S^f_2(\psi)$. However, we obtain in Theorem 4.2 that if $\psi : (M_1, g) \to (M_2, h)$ be a smooth map between two Riemannian manifolds, then

$$\text{div} \ S^f_2(Y) = \pm \langle J_{\tau_f(\psi)}(Y), \ \text{d} \psi(Y) \rangle \quad \text{for all} \quad Y \in \Gamma(TM_1) \quad (1)$$

where $\text{div} \ S^f_2$ is the divergence of S^f_2 and $J_{\tau_f(\psi)}$ is the Jacobi field of $\tau_f(\psi)$ (there is a - or + sign convention in this formula). Hence, if $\tau_f(\psi)$ is a Jacobi field, then ψ satisfies the conservation law for S^f_2. It implies Corollary 4.4 [22] that if ψ is a biharmonic map between Riemannian manifolds, then ψ satisfies the conservation law for the stress bi-energy tensor $S_2(\psi)$. We also discuss a few applications concerning the vanishing of the stress f-bienergy tensor.

2. Preliminaries

2.1. Motivation

In mathematical physics, the equation of the motion of a continuous system of spins with inhomogeneous neighborhood Heisenberg interaction is

$$\frac{\partial \psi}{\partial t} = f(x)(\psi \times \Delta \psi) + \nabla f \cdot (\psi \times \nabla \psi) \quad (2)$$

where $\Omega \subset \mathbb{R}^m$ is a smooth domain in the Euclidean space, f is a real-valued function defined on Ω, $\psi(x, t) \in S^2$, and \times is the cross product in \mathbb{R}^3 and Δ is the Laplace operator in \mathbb{R}^m. Such a model is called the inhomogeneous Heisenberg ferromagnet [10, 11, 14]. Physically, the function f is called the coupling function.
and is the continuum of the coupling constant between the neighboring spins. It is known from [18] that the tension field of a map \(\psi \) into \(S^2 \) is \(\tau(\psi) = \Delta \psi + |\nabla \psi|^2 \psi \). Observe that the right hand side of (2) can be expressed as
\[
\psi \times (f \tau(\psi) + \nabla f \cdot \nabla \psi).
\]
(3)
Hence, \(\psi \) is a smooth stationary solution (i.e., \(\frac{\partial \psi}{\partial t} = 0 \)) of (2) if and only if
\[
f \tau(\psi) + \nabla f \cdot \nabla \psi = 0
\]
(4)
i.e., \(\psi \) is an \(f \)-harmonic map. Consequently, there is a one-to-one correspondence between the set of the stationary solutions of the inhomogeneous Heisenberg spin system (2) on the domain \(\Omega \) and the set of \(f \)-harmonic maps from \(\Omega \) into \(S^2 \). The inhomogeneous Heisenberg spin system (2) is also called inhomogeneous Landau-Lifshitz system (cf. [19, 23, 24]).

2.2. \(f \)-harmonic Maps

Let \(f : (M_1, g) \to (0, \infty) \) be a smooth function. Many aspects of the \(f \)-harmonic maps which generalize harmonic maps, were studied in [12, 13, 19, 24] recently. Let \(\psi : (M_1, g) \to (M_2, h) \) be a smooth map from an \(m \)-dimensional Riemannian manifold \((M_1, g) \) into an \(n \)-dimensional Riemannian manifold \((M_2, h) \). A map \(\psi : (M_1, g) \to (M_2, h) \) is \(f \)-harmonic if and only if \(\psi \) is a critical point of the \(f \)-energy
\[
E_f(\psi) = \frac{1}{2} \int_{M_1} f|d\psi|^2 dv.
\]
In terms of the Euler-Lagrange equation, \(\psi \) is \(f \)-harmonic if and only if the \(f \)-tension field
\[
\tau_f(\psi) = f \tau(\psi) + d\psi(\text{grad } f) = 0
\]
(5)
where \(\tau(\psi) = \text{Tr}_g D\psi \) is the tension field of \(\psi \). In particular, when \(f = 1 \), \(\tau_f(\psi) = \tau(\psi) \).
Let \(F : [0, \infty) \to [0, \infty) \) be a \(C^2 \) function such that \(F' > 0 \) on \((0, \infty) \). \(F \)-harmonic maps between Riemannian manifolds were introduced in [1, 2]. For a smooth map \(\psi : (M_1, g) \to (M_2, h) \) of Riemannian manifolds, the \(F \)-energy of \(\psi \) is defined by
\[
E_F(\psi) = \int_{M_1} F\left(\frac{|d\psi|^2}{2}\right) dv.
\]
(6)
When \(F(t) = t, (\frac{2t}{p})^{\frac{p}{2}} (p \geq 4), (1 + 2t)^{\alpha} (\alpha > 1, \dim M_1 = 2), \) and \(e^t \), they are the energy, the \(p \)-energy, the \(\alpha \)-energy of Sacks-Uhlenbeck [28], and the exponential energy, respectively. A map \(\psi \) is \(F \)-harmonic if and only if \(\psi \) is a critical point of the \(F \)-energy functional. In terms of the Euler-Lagrange equation,
ψ : M₁ → M₂ is an F - harmonic map if and only if the F-tension field
\[\tau_F(\psi) = F'(\frac{|d\psi|^2}{2}) \tau(\psi) + \psi \left(\text{grad}(F'(\frac{|d\psi|^2}{2})) \right) = 0. \] (7)

Proposition 1. 1) If ψ : (M₁, g) → (M₂, h) an F-harmonic map without critical points (i.e., [dψ] ≠ 0 for all x ∈ M₁), then it is an f-harmonic map with \(f = F'(\frac{|d\psi|^2}{2}) \). In particular, a p-harmonic map without critical points is an f-harmonic map with \(f = |d\psi|^p \).
2) [15, 25]. A map ψ : (M₁ⁿ, g) → (M₂ⁿ, h) is f-harmonic if and only if ψ : (M₁ⁿ, f^{\frac{2}{n-2}} g) → (M₂ⁿ, h) is a harmonic map.

Proof: 1) It follows from (5) and (7) immediately (cf. Corollary 1.1 in [26]).
2) See [15].

3. \(f \)-biharmonic maps

Let \(f : (M_1,g) \to (0, \infty) \) be a smooth function. \(f \)-biharmonic maps between Riemannian manifolds which generalized biharmonic maps [20, 21], were first studied by Ouakkas, Nasri and Djaa [27] recently. An \(f \)-biharmonic map ψ : (M₁, g) → (M₂, h) between Riemannian manifolds is the critical point of the \(f \)-bienergy functional
\[(E_2)_f(\psi) = \frac{1}{2} \int_{M_1} ||\tau_f(\psi)||^2 \, d\mu \] (8)
where the \(f \)-tension field \(\tau_f(\psi) = f \tau(\psi) + d(\text{grad} \, f) \). In terms of Euler-Lagrange equation, ψ is \(f \)-biharmonic if and only if the \(f \)-bitension field of ψ
\[(\tau_2)_f(\psi) = \pm \Delta^f_2 \tau_f(\psi) \pm f \tau'(\tau_f(\psi), d\psi) d\psi = 0 \] (9)
where
\[\Delta^f_2 \tau_f(\psi) = \tilde{D} f \tilde{D} \tau_f(\psi) - f \tilde{D} D \tau_f(\psi) = \sum_{i=1}^{m} (\tilde{D}_{e_i} f \tilde{D}_{e_i} \tau_f(\psi) - f \tilde{D}_{D e_i} \tau_f(\psi)). \]

Here, \(D, \tilde{D} \) are the connections on TM₁, \(\psi_{-1} TM_2 \), respectively, \(\{e_i\}_{1 \leq i \leq m} \) is a local orthonormal frame at any point in M₁, and \(\tilde{R} \) is the Riemannian curvature of M₂. There is a + or - sign convention in (9), and we take + sign in the context for simplicity. In particular, if \(f = 1 \), then \((\tau_2)_f(\psi) = \tau_2(\psi) \), the bitension field of ψ.

Theorem 2. If ψ : (M₁, g) → (M₂, h) is a f-biharmonic map from a compact Riemannian manifold M₁ into a Riemannian manifold M₂ with non-positive curvature satisfying
\[\langle f \tilde{D}_{e_i} \tilde{D}_{e_i} \tau_f(\psi) - \tilde{D}_{e_i} f \tilde{D}_{e_i} \tau_f(\psi), \tau_f(\psi) \rangle \geq 0 \] (10)
then ψ is f-harmonic.

Proof: Since $\psi : M_1 \to M_2$ is f-biharmonic, it follows from (9) that
\[
(\tau_2)_f(\psi) = \tilde{D} f \tilde{D} \tau_f(\psi) - f \tilde{D} D \tau_f(\psi) + f R'(\tau_f(\psi), d\psi)d\psi = 0. \tag{11}
\]

Suppose that the compact supports of the maps $\frac{\partial \psi}{\partial t}$ and $\tilde{D}_{e_i} \frac{\partial \psi}{\partial t}$ ($\{\psi_t\} \in C^\infty(M_1 \times (-\epsilon, \epsilon), M_2)$ is a one parameter family of maps with $\psi_0 = \psi$) are contained in the interior of \mathcal{M}. We compute
\[
\frac{1}{2} \int \Delta ||\tau_f(\psi)||^2 = f \langle \tilde{D}_{e_i} \tau_f(\psi), \tilde{D}_{e_i} \tau_f(\psi) \rangle + f \langle \tilde{D}^* \tilde{D} \tau_f(\psi), \tau_f(\psi) \rangle
\]
\[
= f \langle \tilde{D}_{e_i} \tau_f(\psi), \tilde{D}_{e_i} \tau_f(\psi) \rangle + f \langle \tilde{D}_{e_i} \tilde{D}_{e_i} \tau_f(\psi) - \tilde{D}_{D_{e_i}} \tau_f(\psi), \tau_f(\psi) \rangle
\]
\[
= f \langle \tilde{D}_{e_i} \tau_f(\psi), \tilde{D}_{e_i} \tau_f(\psi) \rangle + f \langle \tilde{D}_{e_i} \tilde{D}_{e_i} \tau_f(\psi) - \tilde{D}_{D_{e_i}} \tau_f(\psi), \tau_f(\psi) \rangle
\]
\[
\geq 0
\tag{12}
\]
(where $\tilde{D}^* \tilde{D} = \tilde{D} \tilde{D} - \tilde{D} [20]$ by (10), (11), $f > 0$ and $R' \leq 0$. It implies that
\[
\frac{1}{2} \int \Delta ||\tau_f(\psi)||^2 \geq 0.
\]

By applying the Bochner’s technique, we know that $||\tau_f(\psi)||^2$ is constant and that
\[
\tilde{D}_{e_i} \tau_f(\psi) = 0 \quad \text{for all} \quad i = 1, 2, ... m.
\]

It follows from Eells-Lemaire [15] results that $\tau_f(\psi) = 0$, i.e., ψ is f-harmonic on M_1.

Corollary 3 ([20]). If $\psi : (M_1, g) \to (M_2, h)$ is a biharmonic map from a compact Riemannian M_1 manifold into a Riemannian manifold M_2 with non-positive curvature, then ψ is harmonic.

Proof: When $f = 1$ and $\psi : M_1 \to M_2$ is a biharmonic map from a compact Riemannian M_1 manifold into a Riemannian manifold M_2 with non-positive curvature, (11) becomes
\[
\tau_2(\psi) = \tilde{D}^* \tilde{D} \tau(\psi) + R'(\tau(\psi), d\psi)d\psi = 0.
\]

The identity (13) reduces to
\[
\frac{1}{2} \int \Delta ||\tau(\psi)||^2 = \langle \tilde{D}_{e_i} \tau(\psi), \tilde{D}_{e_i} \tau(\psi) \rangle + \langle \tilde{D}^* \tilde{D} \tau(\psi), \tau(\psi) \rangle
\]
\[
= \langle \tilde{D}_{e_i} \tau(\psi), \tilde{D}_{e_i} \tau(\psi) \rangle - \langle R'(d\psi, d\psi) \tau(\psi), \tau(\psi) \rangle \geq 0
\]
since ψ is biharmonic, and M_2 is a Riemannian manifold with non-positive curvature R'. Note that (10) is automatically satisfied. It follows from the similar arguments as Theorem 3.1 that ψ is harmonic.

It is well-known from [18] that if $\psi : (M_1, g) \to (M_2, h)$ is a harmonic map of two Riemannian manifolds and $\phi : (M_2, h) \to (M_3, k)$ is totally geodesic of two Riemannian manifolds, then $\phi \circ \psi : (M_1, g) \to (M_3, k)$ is harmonic. However, if $\psi : (M_1, g) \to (M_2, h)$ is an f-biharmonic map, and $\phi : (M_2, h) \to (M_3, k)$ is totally geodesic, then $\phi \circ \psi : (M_1, g) \to (M_3, k)$ is not necessarily an f-biharmonic map. We obtain the following theorem instead.

Theorem 4. If $\tau_f(\psi)$ is a Jacobi field for a smooth map $\psi : (M_1, g) \to (M_2, h)$ of two Riemannian manifolds, and $\phi : (M_2, h) \to (M_3, k)$ is a totally geodesic map of two Riemannian manifolds, then $\tau_f(\phi \circ \psi)$ is a Jacobi field.

Proof: Let $D, D', \tilde{D}, \tilde{D}', \tilde{D}''$, \tilde{D}, \tilde{D}' and \tilde{D}'' are the respective connections on $TM_1, TM_2, \psi^{-1}TM_2, \phi^{-1}TM_3, (\phi \circ \psi)^{-1}TM_2, T^*M_2 \otimes \psi^{-1}TM_2, T^*M_2 \otimes \phi^{-1}TM_3$ and $T^*M_1 \otimes (\phi \circ \psi)^{-1}TM_3$. Then we have

$$\tilde{D}'_X d(\phi \circ \psi)(Y) = (\tilde{D}'_{\psi(X)} d\phi)(Y) + d\phi \circ \tilde{D}'_X \psi(Y)$$

(13)

for all $X, Y \in \Gamma(TM_2)$. We have also

$$R^M(X, \phi(Y')) d\phi(Z') = R^{\phi^{-1}TM_3}(X', \phi(Y')) d\phi(Z')$$

(14)

for all $X', Y', Z' \in \Gamma(TM_2)$.

It is well-known from [18] that the tension field of the composition $\phi \circ \psi$ is given by

$$\tau(\phi \circ \psi) = d\phi(\tau(\psi)) + \text{tr}_g D_d d\phi(\tau(\psi)) = d\phi(\tau(\psi))$$

since ϕ is totally geodesic. Then the f-tension field of the composition $\phi \circ \psi$ is

$$\tau_f(\phi \circ \psi) = d\phi(\tau_f(\psi)) + f \text{tr}_g D_d d\phi(\tau(\psi)) = d\phi(\tau_f(\psi))$$

since ϕ is totally geodesic. Recall that $\{e_i\}_{i=1}^m$ is a local orthonormal frame at any point in M_1, and let $\tilde{D}'' \tilde{D} = \tilde{D}_{e_k} \tilde{D}_{e_k} - \tilde{D}_{D_{e_k} e_k}$ and $\tilde{D}'' \tilde{D}'' = \tilde{D}_{e_k} \tilde{D}_{e_k} - \tilde{D}_{D_{e_k} e_k}$. Then we have

$$\tilde{D}'' \tilde{D}'' \tau_f(\phi \circ \psi) = \tilde{D}'' \tilde{D}'' (d\phi \circ \tau_f(\psi))$$

$$= \tilde{D}''_{e_k} \tilde{D}''_{e_k} (d\phi \circ \tau_f(\psi)) - \tilde{D}''_{D_{e_k} e_k} (d\phi \circ \tau_f(\psi))$$

(15)

We derive from (13) that

$$\tilde{D}''_{e_k} (d\phi \circ \tau_f(\psi)) = (\tilde{D}'_{D_{e_k} d\phi(e_k)} \psi)(\tau_f(\psi)) + d\phi \circ \tilde{D}''_{e_k} (\tau_f(\psi))$$

$$= d\phi \circ \tilde{D}''_{e_k} \tau_f(\psi)$$
since ϕ is totally geodesic. Therefore, we arrive at
\[
\tilde{D}_{e_k}^{\mu}(d\phi \circ \tau_f(\psi)) = \tilde{D}_{\phi}^{\mu}(d\phi \circ \tilde{D}_{\phi} \tau_f(\psi)) = d\phi \circ \tilde{D}_{e_k} \tilde{D}_{\phi} \tau_f(\psi)
\] (16)
and
\[
\tilde{D}_{\phi}^{\mu}(d\phi \circ \tau(\psi)) = d\phi \circ \tilde{D}_{\phi} \tau(\psi).
\] (17)
Substituting (16), (17) into (16), we deduce
\[
\tilde{D}^{\mu \phi \tau_f}(\phi \circ \psi) = d\phi \circ \tilde{D}^* \tau_f(\psi).
\] (18)
On the other hand, it follows from (14) that
\[
R^M_3(d(\phi \circ \psi)(e_i), \tau_f(\phi \circ \psi))d(\phi \circ \psi)(e_i)
= R^{\phi \tau_f}_{M_3}(d(\phi(e_i), \tau_f(\psi))d\phi(e_i))
= d\phi \circ R^M_3(d(\phi(e_i), \tau_f(\psi))d\phi(e_i)).
\] (19)
By (18) and (19), we obtain
\[
\tilde{D}^{\mu \phi \tau_f}(\phi \circ \psi) + R^M_3(d(\phi \circ \psi)(e_i), \tau_f(\phi \circ \psi))d(\phi \circ \psi)(e_i)
= d\phi \circ [\tilde{D}^* \tau_f(\psi) + R^M_3(d(\phi(e_i), \tau_f(\psi))d\phi(e_i))].
\] (20)
Consequently, if $\tau_f(\psi)$ is a Jacobi field, then $\tau_f(\phi \circ \psi)$ is a Jacobi field. ■

Corollary 5 ([8]). If $\psi : (M_1, g) \to (M_2, h)$ is a biharmonic map between two Riemannian manifolds and $\phi : (M_2, h) \to (M_3, k)$ is totally geodesic, then $\phi \circ \psi : (M_1, g) \to (M_3, k)$ is a biharmonic map.

Proof: If $f = 1$ and $\psi : (M_1, g) \to (M_2, h)$ is a biharmonic map of two Riemannian manifolds, then $\tau_f(\psi) = \tau(\psi)$ is a Jacobi field. We can apply the analogous arguments as Theorem 3.3, and (20) becomes
\[
\tilde{D}^{\mu \phi \tau}(\phi \circ \psi) + R^M_3(d(\phi \circ \psi)(e_i), \tau(\phi \circ \psi))d(\phi \circ \psi)(e_i)
= d\phi \circ [\tilde{D}^* \tau(\psi) + R^M_3(d(\phi(e_i), \tau(\psi))d\phi(e_i))]
\]
i.e., $\tau_2(\phi \circ \psi) = d\phi \circ (\tau_2(\psi))$, where $\tau_2(\psi)$ is the bi-tension field of ψ. Hence, we can conclude the result. ■

4. **Stress f-bienergy Tensors**

Let $\psi : (M_1, g) \to (M_2, h)$ be a smooth map between two Riemannian manifolds. The stress energy tensor is defined by Baird and Eells [3] as
\[
S(\psi) = c(\psi)g - \psi^*h
\]
where $c(\psi) = \frac{|d\psi|^2}{2}$. Thus we have $\text{div} S(\psi) = -\langle \tau(\psi), d\psi \rangle$. Hence, if ψ is harmonic, then ψ satisfies the conservation law for S (i.e., $\text{div} S(\psi) = 0$). In
[27], the stress f-energy tensor of the smooth map $\psi : M_1 \to M_2$ was similarly defined as

$$S^f(\psi) = f e(\psi) g - f^\ast h$$

and they obtained

$$\text{div} \, S^f(\psi) = -\langle \tau_F(\psi), d\psi \rangle + e(\psi) df.$$

In this case, an f-harmonic map usually does not satisfy the conservation law for S^f. In particular, by letting $f = F'(\frac{d\psi^2}{2})$, then $S^f(\psi) = F'(\frac{d\psi^2}{2}) e(\psi) g - F'(\frac{d\psi^2}{2})^\ast h$. It is different than following Ara’s idea [1] to define $S^F(\psi) = F'(\frac{d\psi^2}{2}) g - F'(\frac{d\psi^2}{2})^\ast h$, and we have

$$\text{div} \, S^F(\psi) = -\langle \tau_F(\psi), d\psi \rangle.$$

It implies that if $\psi : M_1 \to M_2$ is a F-harmonic map between Riemannian manifolds, then it satisfies the conservation law for S^F.

The stress bienergy tensors and the conservation laws of biharmonic maps between Riemannian manifolds were first studied by Jiang [22] in 1987. Following his notions, we define the stress f-bienergy tensor of a smooth map as follows.

Definition 6. Let $\psi : (M_1, g) \to (M_2, h)$ be a smooth map between two Riemannian manifolds. The stress f-bienergy tensor of ψ is defined by

$$S^f_2(X, Y) = \frac{1}{2} \langle \tau_f(\psi)^2 \rangle(X, Y) + \langle d\psi, \bar{D}(\tau_f(\psi)) \rangle(X, Y)$$

$$- \langle d\psi(X), \bar{D}_Y \tau_f(\psi) \rangle - \langle d\psi(Y), \bar{D}_X \tau_f(\psi) \rangle$$

(21)

for all $X, Y \in \Gamma(TM_1)$.

Remark that if $\psi : (M_1, g) \to (M_2, h)$ is an f-biharmonic map between two Riemannian manifolds, then ψ does not necessarily satisfy the conservation law for the stress f-bienergy tensor S^f_2. Instead, we obtain the following theorem.

Theorem 7. If $\psi : (M_1, g) \to (M_2, h)$ be a smooth map between two Riemannian manifolds, then we have

$$\text{div} \, S^f_2(Y) = \pm \langle J_{\tau_f(\psi)}(Y), d\psi(Y) \rangle$$

for all $Y \in \Gamma(TM_1)$

(22)

where $J_{\tau_f(\psi)}$ is the Jacobi field of $\tau_f(\psi)$.

Proof: For the map $\psi : M_1 \to M_2$ between two Riemannian manifolds, set $S^f_2 = K_1 + K_2$, where K_1 and K_2 are $(0, 2)$-tensors defined by

$$K_1(X, Y) = \frac{1}{2} \langle \tau_f(\psi)^2 \rangle(X, Y) + \langle d\psi, \bar{D} \tau_f(\psi) \rangle(X, Y)$$

$$K_2(X, Y) = -\langle d\psi(X), \bar{D}_Y \tau_f(\psi) \rangle - \langle d\psi(Y), \bar{D}_X \tau_f(\psi) \rangle.$$
Let \(\{ e_i \} \) be the geodesic frame at a point \(a \in M_1 \), and write \(Y = Y^i e_i \) at the point \(a \). We first compute
\[
\text{div} \, K_1(Y) = \sum_i (\tilde{D}_{e_i} K_1)(e_i, Y) = \sum_i (e_i(K_1(e_i, Y) - K_1(e_i, \tilde{D}_{e_i} Y))
\]
\[
= \sum_i (e_i \left(\frac{1}{2} |\tau_f(\psi)|^2 Y^i + \sum_k (d\psi(e_k), \tilde{D}_{e_k} \tau_f(\psi) Y^i) \right)
\]
\[
- \frac{1}{2} |\tau_f(\psi)|^2 Y^i e_i - \sum_k (d\psi(e_k), \tilde{D}_{e_k} \tau_f(\psi) Y^i e_i)
\]
\[
= \langle \tilde{D}_Y \tau_f(\psi), \tau_f(\psi) \rangle + \sum_i (d\psi(Y, e_i), \tilde{D}_{e_i} \tau_f(\psi)) \tag{23}
\]
\[
+ \sum_i (d\psi(e_i), \tilde{D}_Y \tilde{D}_{e_i} \tau_f(\psi))
\]
\[
= \langle \tilde{D}_Y \tau_f(\psi), \tau_f(\psi) \rangle + \text{Tr} \langle \tilde{D}d\psi(Y, \cdot), \tilde{D} \tau_f(\psi) \rangle
\]
\[
+ \text{Tr} \langle d\psi(\cdot), \tilde{D}^2 \tau_f(\psi)(Y, \cdot) \rangle.
\]

We then compute
\[
\text{div} \, K_2(Y) = \sum_i (\tilde{D}_{e_i} K_2)(e_i, Y) = \sum_i (e_i(K_2(e_i, Y) - K_2(e_i, \tilde{D}_{e_i} Y))
\]
\[
= -\langle \tilde{D}_Y \tau_f(\psi), \tau_f(\psi) \rangle - \sum_i \langle \tilde{D}d\psi(Y, e_i), \tilde{D}_{e_i} \tau_f(\psi) \rangle
\]
\[
- \sum_i (d\psi(e_i), \tilde{D}_{e_i} \tilde{D}_Y \tau_f(\psi) - \tilde{D}_{\tilde{D}_{e_i} Y} \tau_f(\psi))
\]
\[
+ \langle d\psi(Y), \triangle \tau_f(\psi) \rangle = -\langle \tilde{D}_Y \tau_f(\psi), \tau_f(\psi) \rangle
\]
\[
- \text{Tr} \langle \tilde{D}d\psi(Y, \cdot), \tilde{D} \tau_f(\psi) \rangle
\]
\[
- \text{Tr} \langle d\psi(\cdot), \tilde{D}^2 \tau_f(\psi)(\cdot, Y) \rangle + \langle d\psi(Y), \triangle \tau_f(\psi) \rangle. \tag{24}
\]

Adding (24) and (25), we arrive at
\[
\text{div} S_2^f(Y) = \pm \langle d\psi(Y), \triangle \tau_f(\psi) \rangle + \sum_i \langle d\psi(e_i), R^i(Y, e_i) \tau_f(\psi) \rangle
\]
\[
= \pm \langle J_{\tau_f(\psi)}(Y), d\psi(Y) \rangle \tag{25}
\]
where \(J_{\tau_f(\psi)} \) is the Jacobi field of \(\tau_f(\psi) \).

Corollary 8. If \(\tau_f(\psi) \) is a Jacobi field (i.e., \(J_{\tau_f(\psi)} = 0 \)) for a map \(\psi : M_1 \to M_2 \), then it satisfies the conservation law (i.e., \(\text{div} \, S_2^f = 0 \)) for the stress \(f \)-bienergy tensor \(S_2^f \).
Theorem 9 ([22]). If $\psi: (M_1, g) \to (M_2, h)$ is biharmonic between two Riemannian manifolds, then it satisfies the conservation law for stress bienergy tensor S_2.

Proof: If $f = 1$ and $\psi: (M_1, g) \to (M_2, h)$ is biharmonic, then (26) yields to

$$\text{div } S_2(Y) = \pm \langle d\psi, \Delta \tau(\psi) \rangle + \sum_i \langle d\psi(e_i), R'(Y, X_i)\tau(\psi) \rangle$$

$$= \pm \langle J_{\tau(\psi)}(Y), d\psi(Y) \rangle = \pm \tau_2(\psi), d\psi(Y)$$

where $\tau_2(\psi)$ is the bi-tension field of ψ (i.e., $\tau(\psi)$ is a Jacobi field). Hence, we can conclude the result. \blacksquare

Proposition 10. Let $\psi: (M_1, g) \to (M_2, h)$ be a submersion such that $\tau_f(\psi)$ is basic, i.e., $\tau_f(\psi) = W \circ \psi$ for $W \in \Gamma(TM_2)$. Suppose that W is Killing and $|W|^2 = c^2$ is non-zero constant. If M_1 is non-compact, then $\tau_f(\psi)$ is a non-trivial Jacobi field.

Proof: Since $\tau_f(\psi)$ is basic

$$S_2^f(X, Y) = \left(\frac{c^2}{2} + \langle d\psi, \tilde{D}\tau_f(\psi) \rangle \right)(X, Y) - \langle d\psi(X), \tilde{D}_Y\tau_f(\psi) \rangle$$

$$= \langle d\psi(Y), \tilde{D}_{\tau_f(\psi)} \rangle$$

where $X, Y \in \Gamma(TM_1)$. Let a be a point in M_2 with the orthonormal frame $\{e_i\}_{i=1}^n$ such that $\{e_j\}_{j=1}^m$ are in $T_a^o M_1 = (T_a^o M_1)^\perp$ and $\{e_k\}_{k=m+1}^n$ are in $T_a^o M_1 = \text{Ker } d\psi(a)$. Because W is Killing, we have

$$\langle d\psi, \tilde{D}\tau_f(\psi) \rangle(a) = \sum_j \langle d\psi(e_j), \tilde{D}_{e_j}\tau_f(\psi) \rangle + \sum_k \langle d\psi(e_k), \tilde{D}_{e_k}\tau_f(\psi) \rangle$$

$$= \sum_j \langle d\psi(e_j), D^{M_2}_{\psi_\alpha}(e_j) W \rangle = 0.$$ (27)

Therefore,

$$S_2^f(a)(X, Y) = \frac{c^2}{2} (X, Y) + \langle d\psi_a(X), D^{M_2}_{\psi_\alpha}(X) W \rangle$$

$$- \langle d\psi_a(Y), D^{M_2}_{\psi_\alpha}(X) W \rangle = \frac{c^2}{2} (X, Y).$$

If M_1 is not compact, $S_2^f = \frac{c^2}{2} g$ is divergence free and $\tau_f(\psi)$ is a non-trivial Jacobi field due to $c \neq 0$. \blacksquare

Proposition 11. If $\psi: (M_1^2, g) \to (M_2, h)$ is a map from a surface with $S_2^f = 0$, then ψ is f-harmonic.
Proof: Since $S_2^f = 0$, it implies
\[
0 = \text{Tr} S_2^f = |\tau_f(\psi)|^2 + 2\langle \bar{D} \tau_f(\psi), \, d\psi \rangle - 2\langle \bar{D} \tau_f(\psi), \, d\psi \rangle = |\tau_f(\psi)|^2.
\]

Proposition 12. If $\psi : (M_1^n, g) \to (M_2, h) \,(m \neq 2)$ with $S_2^f = 0$, then
\[
\frac{1}{m-2}|\tau_f(\psi)|^2(X, Y) + \langle \bar{D}_X \tau_f(\psi), \, d\psi(Y) \rangle + \langle \bar{D}_Y \tau_f(\psi), \, d\psi(X) \rangle = 0 \quad (28)
\]
for $X, Y \in \Gamma(T(M_1))$.

Proof: Suppose that $S_2^f = 0$, it implies $\text{Tr} S_2^f = 0$. Therefore
\[
\langle \bar{D} \tau_f(\psi), \, d\psi \rangle = -\frac{m}{2(m-2)}|\tau_f(\psi)|^2, \quad m \neq 2. \quad (29)
\]
Substituting it into the definition of S_2^f, we arrive at
\[
0 = S_2^f(X, Y) = \frac{1}{m-2}|\tau_f(\psi)|^2(X, Y)
- \langle \bar{D}_X \tau_f(\psi), \, d\psi(Y) \rangle > -\langle \bar{D}_Y \tau_f(\psi), \, d\psi(X) \rangle. \quad (30)
\]

Corollary 13. If $\psi : (M_1, g) \to (M_2, h) \,(m > 2)$ with $S_1^f = 0$ and rank $\psi \leq m - 1$, then ψ is f-harmonic.

Proof: Since rank $\psi(a) \leq m - 1$, for a point $a \in M_1$ there exists a unit vector $X_a \in \text{Ker} d\psi_a$. Letting $X = Y = X_a$, (28) gives to $\tau_f(\psi) = 0$.

Corollary 14. If $\psi : (M_1, g) \to (M_2, h)$ is a submersion $(m > n)$ with $S_2^f = 0$, then ψ is f-harmonic.

References

