1.
Kamin, S. and Rosenau, P. Non-Linear Diffusion in Finite Mass Medium,
Communications on Pure Applied Mathematics,
1982, vol. 35, no. 1, pp. 113-127. DOI: 10.1002/CPA.3160350106.
2.
Kamin, S. and Rosenau, P. Propagation of Thermal Waves in an
Inhomogeneous Medium, Communications on Pure and Applied Mathematics,
1981, vol. 34, no. 6, pp. 831-852. DOI: 10.1002/CPA.3160340605.
3.
Galaktionov, V. A., Kamin, S., Kersner, R. and Vazquez, J. L.
Intermediate Asymptotics for Inhomogeneous Nonlinear Heat Conduction,
Journal of Mathematical Sciences, 2004, vol. 120, no. 3, pp. 1277-1294.
DOI: 10.1023/B:JOTH.0000016049.94192.aa.
4.
Guedda, M., Hihorst, D. and Peletier, M. A. Disappearing Interfaces
in Nonlinear Diffusion, Advances in Mathematical Sciences and Applications,
1997, vol. 7, pp. 695-710.
5.
Reyes, G. and Vazquez, J. L. The Cauchy Problem for
the Inhomogeneous Porous Medium Equation, Networks and Heterogeneous Media,
2006, vol. 1, no. 2, pp. 337-351. DOI: 10.3934/nhm.2006.1.337.
6.
Reyes, G. and Vazquez, J. L. Long Time Behavior for the Inhomogeneous PME in a
Medium with Slowly Decaying Density, Communications on Pure and Applied Analysis,
2009, vol. 8, no. 2, pp. 493-508. DOI: 10.3934/cpaa.2009.8.493.
7.
Kamin, S., Reyes, G. and Vazquez, J. L. Long Time Behavior
for the Inhomogeneous PME in a Medium with Rapidly Decaying Density,
Discrete and Continuous Dynamical Systems,
2010, vol. 26, no. 2, pp. 521-549. DOI: 10.3934/dcds.2010.26.521.
8.
Kamin, S. and Kersner, R. Disappearance of Interfaces in Finite Time,
Meccanica, 1993, vol. 28, no. 2, pp. 117-120. DOI: 10.1007/BF01020323.
9.
Tedeev, A. F. Conditions for the Time Global Existence and Nonexistence
of a Compact Support of Solutions to the Cauchy Problem for Quasilinear Parabolic Equations,
Siberian Mathematical Journal,
2004, vol. 45, no. 1, pp. 155-164. DOI: 10.1023/B:SIMJ.0000013021.66528.b6.
10.
Tedeev, A. F. The Interface Blow-Up Phenomenon and Local Estimates for
Doubly Degenerate Parabolic Equations,
Applicable Analysis, 2007, vol. 86, no. 6, pp. 755-782. DOI: 10.1080/00036810701435711.
11.
Martynenko, A. V. and Tedeev, A. F. On the Behaviour of Solutions to the Cauchy Problem for a Degenerate
Parabolic Equation with Inhomogeneous Density And a Sources,
Computational Mathematics and Mathematical Physics,
2008, vol. 48, no. 7, pp. 1145-1160. DOI: 10.1134/S0965542508070087.
12. Andreucci, D., Cirmi, G. R., Leonardi, S. and Tedeev, A. F. Large Time Behavior of Solutions
to the Neumann Problem for a Quasilinear Second Order Degenerate Parabolic Equation in Domains with Noncompact Boundary, Journal of Differential Equations,
2001, vol. 174, no. 2, pp. 253-288. DOI: 10.1006/jdeq.2000.3948.
13.
Kalashnikov, A. S. Some Problems of the Qualitative Theory of Non-Linear
Degenerate Second-Order Parabolic Equations,
Russian Mathematical Surveys,
1987, vol. 42, no. 2, pp. 169-222. DOI: 10.1070/RM1987v042n02ABEH001309.
14.
Caffarelli, L., Kohn, R. and Nirenberg, L. First Order Interpolation
Inequalities with Weights, Composito Mathematica,
1984, vol. 53, no. 3, pp. 259-275.
15.
Di Benedetto, E. and Herrero, M. A. On the Cauchy Problem and Initial Traces
for a Degenerate Parabolic Equation,
Transactions of the American Mathematical Society,
1989, vol. 314, no. 1, pp. 187-224. DOI: 10.2307/2001442.
16.
Andreucci, D. and Tedeev, A. F. Universal Bounds at the Blow-Up Time
for Nonlinear Parabolic Equations, Advances in Differential Equations,
2005, vol. 10, no. 1, pp. 89-120.
17.
Andreucci, D. and Tedeev, A. F. Optimal Decay Rate for Degenerate
Parabolic Equations on Noncompact Manifolds, Methods and Applications of Analysis,
2015, vol. 22, no. 4, pp. 359-376. DOI: 10.4310/MAA.2015.v22.n4.a2
18.
Ladyzhenskaya, O. A., Solonnikov, V. A. and Ural'ceva, N. N.
Linear and Quasi-Linear Equations of Parabolic Type,
Translations of Mathematical Monographs, vol. 23, Providence, R.I., American Mathematical Society, 1968.