Abstract: The paper is based on the report which made by authors at the XVI International Scientific Conference "Order analysis and related problems of mathematical modeling. Operator theory and differential equations" (Vladikavkaz, September 2021). A brief review of our recent results is presented. We study the connection of Bernstein and Kantorovich polynomials for an important example with the symmetric module function. It is well known that such nonsmooth functions play a special role in approximation theory. By means of the obtained relations, the investigation of Kantorovich polynomials can be reduced to the using of the Bernstein polynomials properties. In particular, the deviation of Kantorovich polynomials from the symmetric module function is considered. In addition to accurate two-sided estimates on the interval \([0,1]\), a simple asymptotic formula for deviation is noted. The character of the convergence of Kantorovich polynomials differs from that of Bernstein polynomials give on the interval \([0,1]\). We also present new results on the convergence of Kantorovich polynomials in the complex plane. The convergence set is the same as for Bernstein polynomials. This is so-called Kantorovich compact, which limited by the lemniscate \(|4z(1-z)|=1\). Everywhere here the rate of convergence of Kantorovich polynomials is established. In view of the limited size of the article, we present only the schemes of proofs. The proofs in details is planned to be given separately.
Keywords: Bernstein polynomials, Kantorovich polynomials, symmetric module function, rate of convergence, estimation of deviation, convergence in the complex plane
For citation: Okorochkov, I. V., Tikhonov, I. V. and Sherstyukov, V. B. On the Connection
of Bernstein and Kantorovich Polynomials for a Symmetric Module Function, Vladikavkaz Math. J., 2022, vol. 24, no. 1, pp. 87-99 (in Russian). DOI 10.46698/w0554-1733-2841-u
1. Lorentz, G. G. Bernstein Polynomials, Toronto, Univeristy
of Toronto Press, 1953, x+130 p.
2. DeVore, R. A. and Lorentz, G. G. Constructive Approximation,
Berlin-Heidelberg-N.Y., Springer-Verlag, 1993, x+450 p.
3. Videnskij, V. S. Mnogochleny Bernshtejna. Uchebnoe posobie k speckursu
[Bernstein Polynomials. Textbook for the Special Course],
Leningrad, LSPI n. a. A. I. Herzen, 1990, 64 p.
(in Russian).
4. Bustamante, J. Bernstein Operators and Their Properties,
Basel, Birkhauser, 2017, xii+420 p.
5. Tikhonov, I. V., Sherstyukov, V. B. and Petrosova, M. A.
Bernstein Polynomials: the Old and the New,
Matematicheskij forum. T. 8. Ch. 1.
Issledovaniya po matematicheskomu analizu. Ser. "Itogi nauki. Jug Rossii"
[Math. Forum. Vol. 8. Part 1. Studies on Mathematical Analysis
(Results of Science. South of Russia)], Vladikavkaz, SMI VSC RAS and RNO-A,
2014, pp. 126-175 (in Russian).
6. Tikhonov, I. V. and Sherstyukov, V. B.
Approximation of the Module Function with Bernstein Polynomials,
Vestnik Chelyabinskogo gosudarstvennogo universiteta.
Matematika. Mekhanika. Informatika
[Bulletin of Chelyabinsk State University. Matematics. Mechanics. Informatics],
2012, vol. 15, no. 26, pp. 6-40 (in Russian).
7. Tikhonov, I. V. and Sherstyukov, V. B.
Approximation of the Module Function with Bernstein Polynomials:
New Advances and Possible Generalizations,
Sovremennye problemy teorii funktsiy i ikh prilozheniya:
materialy 20-y mezhdunarodnoy Saratovskoy zimney shkoly
[Modern problems of the theory of functions and their applications:
materials of the 20th international Saratov winter school],
Saratov, Nauchnaya kniga, 2020, pp. 409-414 (in Russian).
8. Tikhonov, I. V., Sherstyukov, V. B. and Tsvetkovich, D. G.
Generalized Popoviciu Expansions for Bernstein Polynomials of a Rational Module,
Materialy Voronezhskoy zimney matematicheskoy shkoly
"Sovremennye metody teorii funktsiy i smezhnye problemy".
28 yanvarya–2 fevralya 2019 g. Chast' 1, Itogi nauki i tekhn. Ser.
Sovrem. mat. i ee pril. Temat. obz.
[Proceedings of the Voronezh Winter Mathematical School ``Modern Methods
of Function Theory and Related Problems''. January 28 - February 2, 2019.
Part 1, Progress in Science and Technology. Contemporary Mathematics
and Its Applications. Thematic Surveys],
2019, vol. 170, pp. 71-117 (in Russian).
DOI: 10.36535/0233-6723-2019-170-71-117.
9. Tikhonov, I. V., Sherstyukov, V. B. and Tsvetkovich, D. G.
Comparative Analysis of Two-Sided Estimates of the Central Binomial Coefficient,
Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
[Chelyabinsk Physical and Mathematical Journal],
2020, vol. 5, no. 1, pp. 70-95 (in Russian).
DOI: 10.24411/2500-0101-2020-15106.
10. Popov, A. Yu. Two-Sided Estimates of the Central Binomial Coefficient,
Chelyabinskiy Fiziko-Matematicheskiy Zhurnal [Chelyabinsk Physical and Mathematical Journal],
2020, vol. 5, no. 1, pp. 56-69 (in Russian). DOI: 10.24411/2500-0101-2020-15105.
11. Popov, A. Yu. The Upper Bound of the Remainder of Power Series
with Positive Coefficients of a Special Class,
Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
[Chelyabinsk Physical and Mathematical Journal],
2017, vol. 2, no. 2, pp. 192-197 (in Russian).
12. Graham, R. L., Knuth, D. E. and Patashnik, O.
Concrete Mathematics: A Foundation for Computer Science,
Reading, Massachusetts, Addison-Wesley Longman Publ. Co, Inc.,
1994, ix+658 p.
13. Telyakovskii, S. A. On the Approximation of Differentiable
Functions by Bernstein Polynomials and Kantorovich Polynomials,
Proc. Steklov Inst. Math., 2008, vol. 260, pp. 289-296.
14. Kantorovic, L. V. Sur la Convergence de la Suite des Polynomes
de S. Bernstein en Dehors de l’Intervalle Fondamental,
Bulletin de l'Academie des Sciences de l'URSS.
Classe des sciences mathematiques et nat.,
1931, no. 8, pp. 1103-1115.
15. Gal, S. G. Approximation by Complex Bernstein and Convolution Type Operators,
New Jersey-London-Singapore, World Scientific, 2009, xii+338 p.
16. Tikhonov, I. V., Tsvetkovich, D. G. and Sherstyukov, V. B.
Computer Analysis of the Attractors of Zeros for Classical Bernstein Polynomials,
Journal of Mathematical Sciences,
2020, vol. 245, no. 2, pp. 217-233.
17. Tikhonov, I. V., Sherstyukov, V. B. and Tsvetkovich, D. G.
How do Attractors of Zeros for Classical Bernstein Polynomials Look Like,
Differentsial'nye uravneniya i protsessy upravleniya
[Differential Equations and Control Processes],
2017, no. 2, pp. 59-73 (in Russian).
18. Tikhonov, I. V., Sherstyukov, V. B. and Tsvetkovich, D. G.
On Some Method for Finding the Convergence Domain of Bernstein Polynomials in the Complex Plane,
Nekotorye aktual'nye problemy sovremennoj matematiki i mat. obrazovaniya.
Gercenovskie chteniya - 2018.
Materialy nauchnoj konferentcii, 09-13 aprelya 2018 g.
[Some Actual Problems of Modern Mathematics and Mathematical Education. Herzen Readings - 2018],
Saint Petersburg, Publishing House of RSPU n. a. A. I. Herzen,
2018, pp. 145-153 (in Russian).
19. Tsvetkovich, D. G. Detailed Atlas of Attractors of Zeros
for the Classical Bernstein Polynomials,
Chelyabinskiy Fiziko-Matematicheskiy Zhurnal
[Chelyabinsk Physical and Mathematical Journal],
2018, vol. 3, no. 1, pp. 58-89 (in Russian).