Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru

Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.

DOI: 10.46698/e7204-1864-5097-s

Nonlinear Viscosity Algorithm with Perturbation for Nonexpansive Multi-Valued Mappings

Sahebi, H. R.
Vladikavkaz Mathematical Journal 2021. Vol. 23. Issue 1.

Abstract: The viscosity iterative algorithms for finding a common element of the set of fixed points for nonlinear operators and the set of solutions of variational inequality problems have been investigated by many authors. The viscosity technique allow us to apply this method to convex optimization, linear programming and monoton inclusions. In this paper, based on viscosity technique with perturbation, we introduce a new nonlinear viscosity algorithm for finding an element of the set of fixed points of nonexpansive multi-valued mappings in a Hilbert spaces. Furthermore, strong convergence theorems of this algorithm were established under suitable assumptions imposed on parameters. Our results can be viewed as a generalization and improvement of various existing results in the current literature. Moreover, some numerical examples that show the efficiency and implementation of our algorithm are presented.

Keywords: fixed point problem, generalized equilibrium problem, nonexpansive multi-valued mapping, Hilbert space

For citation: Sahebi, H. R. Nonlinear Viscosity Algorithm with Perturbation for
Nonexpansive Multi-Valued Mappings, Vladikavkaz Math. J., 2021, vol. 23, no. 1, pp. 60-76. DOI 10.46698/e7204-1864-5097-s

1. Ceng, L. C. and Yao, J. C. Hybrid Viscosity Approximation Schemes for Equilibrium Problems
and Fixed Point Problems of Infinitely Many Nonexpansive Mappings, Applied Mathematics and Computation, 2008,
vol. 198, pp. 729-741. DOI: 10.1016/j.amc.2007.09.011.

2. Hussain, N. and Khan, A. R. Applications of the Best Approximation Operator to \(\ast\)-Nonexpansive Maps in Hilbert Spaces, Numerical Functional Analysis and Optimization, 2003, vol. 24, pp. 327-338. DOI: 10.1081/NFA-120022926.

3. Peng, J.-W., Liou, Y.-C., and Yao, J.-C. An Iterative Algorithm Combining Viscosity Method with Parallel Method for a Generalized Equilibrium Problem and Strict Pseudocontractions, Fixed Point Theory and Applications, 2009, art. no. 794178. DOI: 10.1155/2009/794178.

4. Tada, A. and Takahashi, W. Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem, Journal of Optimization Theory and Applications, 2007, vol. 133, pp. 359-370. DOI: 10.1007/s10957-007-9187-z.

5. Takahashi, S. and Takahashi, W. Viscosity Approximation Method for Equilibrium and Fixed Point
Problems in Hilbert Space, Journal of Mathematical Analysis and Applications, 2007, vol. 331, no. 1, pp. 506-515. DOI: 10.1016/j.jmaa.2006.08.036.

6. Ceng, L. C., Hui-Ying Hu and Wong, M. M. Strong and Weak Convergence Theorems for Generalized
Mixed Equilibrium Problem with Perturbation and Fixed Point Problem of Infinitely Many
Nonexpansive Mappings, Taiwanese Journal of Mathematics, 2011, vol. 15, no. 3, pp. 1341-1367.
DOI: 10.11650/twjm/1500406303.

7. Blum, E. and Oettli, W. From Optimization and Variational
Inequalities to Equilibrium Problems, Math. Stud., 1994, vol. 63, pp. 123-145.

8. Ceng, L. C., Al-Homidan, S. and Ansari, Q. H. and Yao, J. C. An Iterative Scheme for Equilibrium
Problems and Fixed Point Problems of Strict Pseudo-Contraction Mappings, Journal of Computational
and Applied Mathematics, 2009, vol. 223, pp. 967-974. DOI: 10.1016/j.cam.2008.03.032.

9. Taherian, M. and Azhini, M. Strong Convergence Theorems for Fixed Point Problem of Infinite Family of non Self Mapping and Generalized Equilibrium Problems with Perturbation in Hilbert Spaces, Advances and Applications in Mathematical Sciences, 2016, vol. 15, no. 2, pp. 25-51.

10. Takahashi, S. and Takahashi, W. Strong Convergence Theorem for a Generalized Equilibrium Problem and a Nonexpansive Mapping in a Hilbert Space, Nonlinear Analysis: Theory, Methods and Applications, 2008, vol. 69, no. 3, pp. 1025-1033. DOI: 10.1016/j.na.2008.02.042.

11. Sahebi, H. R., Cheragh, M. and Azhini, M. A Viscosity Iterative Algorithm Technique
for Solving a General Equilibrium Problem System, Tamkang Journal of Mathematics, 2019, vol. 50, no. 4, pp. 391-408. DOI: 10.5556/j.tkjm.50.2019.2831.

12. Sahebi, H. R. and Razani, A. A Solution of a General Equilibrium Problem, Acta Mathematica Scientia, 2013, vol. 33, no. 6, pp. 1598-1614. DOI: 10.1016/S0252-9602(13)60108-3.

13. Sahebi, H. R. and Razani, A. An Iterative Algorithm for Finding the Solution of a General e
Quilibrium Problem System, Filomat, 2014, vol. 28, no. 7, pp. 1393-1415. DOI:10.2298/FIL1407393S.

14. Sahebi, H. R. and Ebrahimi, S. An Explicit Viscosity Iterative Algorithm for Finding the Solutions of a General Equilibrium Problem Systems, Tamkang Journal of Mathematics, 2015, vol. 46, no. 3, pp. 193-216. DOI: 10.5556/j.tkjm.46.2015.1678.

15. Sahebi, H. R. and Ebrahimi, S. A Viscosity Iterative Algorithm for the Optimization Problem System, Filomat, 2017, vol. 8, pp. 2249-2266. DOI: 10.2298/FIL1708249S.

16. Assad, N. A. and Kirk, W. A. Fixed Point Theorems for Set-Valued
Mappings of Contractive Type, Pacific Journal of Mathematics, 1972, vol. 43, pp. 553-562.

17. Pietramala, P. Convergence of Approximating Fixed Points Sets for Multivalued Nonexpansive Mappings,
Commentationes Mathematicae Universitatis Carolinae, 1991, vol. 32, pp. 697-701.

18. Shahzad, N. and Zegeye, H. On Mann and Ishikawa Iteration Schemes for Multi-Valued Maps in Banach
Spaces, Nonlinear Analysis: Theory, Methods and Applications, 2009, vol. 71, no. 3-4, pp. 838-844. DOI: 10.1016/j.na.2008.10.112.

19. Song, Y. and Wang, H. Convergence of Iterative Algorithms for Multivalued Mappings in Banach Spaces,
Nonlinear Analysis: Theory, Methods and Applications, 2009, vol. 70, no. 4, pp. 1547-1556. DOI: 10.1016/j.na.2008.02.034.

20. Opial, Z. Weak Convergence of the Sequence of Successive Approximations for Nonexpansive Mappings, Bulletin of the American Mathematical Society, 1967, vol. 73, no. 4, pp. 591-597. DOI: 10.1090/S0002-9904-1967-11761-0.

21. Agarwal, R. P., O'Regan, D. and Sahu, D. R.Fixed Point Theory for Lipschitzian-Type
Mappings with Applications, Springer, 2009. DOI: 10.1007/978-0-387-75818-3.

22. Chang, S. S., Lee, J. H. and Chan, W. An New Method for Solving Equilibrium Problem, Fixed Point Problem and Variational Inequality Problem with Application to Optimization, Nonlinear Analysis: Theory, Methods and Applications, 2009, vol. 70, pp. 3307-3319. DOI: 10.1016/j.na.2008.04.035.

23. Cholamjiak, W. and Suantai, S. A. Hybrid Method for a Countable Family of Multivalued Maps, Equilibrium Problems, and Variational Inequality Problems, Discrete Dynamics in Nature and Society, 2010, vol. 2010, art. ID 349158, 14 p. DOI: 10.1155/2010/349158.

24. Cianciaruso, F., Marino, G., Muglia, L. and Yao, Y. A Hybrid Projection Algorithm for Finding Solutions of Mixed Equilibrium Problem and Variational Inequality Problem, Fixed Point Theory and Algorithms for Sciences and Engineering, 2010, art. no. 383740\,(2009). DOI: 10.1155/2010/383740.

25. Combettes, P. L. and Hirstoaga, A. Equilibrium Programming in Hilbert Space, Journal of Nonlinear and Convex Analysis, 2005, vol. 6, pp. 117-136.

26. Marino, G. and Xu, H. K. A General Iterative Method for Nonexpansive Mappings in Hilbert Spaces, Journal of Mathematical Analysis and Applications, 2006, vol. 318, pp. 43-52. DOI: 10.1016/j.jmaa.2005.05.028.

27. Marino, G. and Xu, H. K. Weak and Strong Convergence Theorems for Strict Pseudocontractions
in Hilbert Spaces, Journal of Mathematical Analysis and Applications, 2007, vol. 329, pp. 336-346. DOI:10.1016/j.jmaa.2006.06.055.

28. Takahashi, W. Nonlinear Functional Analysis, Fixed Point Theory and Its Application,
Japan, Yokohama Publ., 2000.

29. Suzuki, T. Strong Convergence of Krasnoselskii and Mann's Type Sequences for one Parameter Nonexpansive Semigroups without Bochner Integrals, Journal of Mathematical Analysis and Applications, 2005, vol. 305, no. 1, pp. 227-239. DOI: 10.1016/j.jmaa.2004.11.017.

30. Xu, H.-K. Viscosity Approximation Methods for Nonexpansive Mappings, Journal of Mathematical Analysis and Applications, 2004, vol. 298, no. 1, pp. 279-291.

31. Cholamjiak, P., Cholamjiak, W. and Suantai, S. Viscosity Approximation Methods for
Nonexpansive Multi-Valued Nonself Mapping
and Equilibrium Problems, Demonstratio Mathematica, 2014, vol. 47, pp. 382-395. DOI: 10.2478/dema-2014-0030.