Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru

DOI: 10.46698/n8076-2608-1378-r

New Numerical Method for Solving Nonlinear Stochastic Integral Equations

Zeghdane, R.
Vladikavkaz Mathematical Journal 2020. Vol. 22. Issue 4.

Abstract: The purpose of this paper is to propose the Chebyshev cardinal functions for solving Volterra stochastic integral equations. The method is based on expanding the required approximate solution as the element of Chebyshev cardinal functions. Though the way, a new operational matrix of integration is derived for the mentioned basis functions. More precisely, the unknown solution is expanded in terms of the Chebyshev cardinal functions including undetermined coefficients. By substituting the mentioned expansion in the original problem, the operational matrix reducing the stochastic integral equation to system of algebraic equations. The convergence and error analysis of the etablished method are investigated in Sobolev space. The method is numerically evaluated by solving test problems caught from the literature by which the computational efficiency of the method is demonstrated. From the computational point of view, the solution obtained by this method is in excellent agreement with those obtained by other works and it is efficient to use for different problems.

For citation: Zeghdane, R. New Numerical Method for Solving Nonlinear Stochastic Integral Equations, Vladikavkaz Math. J., 2020, vol. 22, no. 4, pp.68-86. DOI 10.46698/n8076-2608-1378-r

1. Boyd, J. P.Chebyshev and Fourier Spectral Methods,
New York, Dover Publications, Inc., 2000.

2. Wazwaz, A.-M. A First Course in Integral Equations,
New Jersey, World Scientific, 1997.
DOI: 10.1142/9570.

3. Kloeden, P. E and Platen, E. Numerical Solution of Stochastic Differential Equations,
Berlin, Springer, 1992.

4. Milstein, G. N. Numerical Integration of Stochastic Differential Equations, Mathematics and its Application, vol. 313,
Dordrecht, Kluwer, 1995.
DOI: 10.1007/978-94-015-8455-5.

5. Asgari, M., Hashemizadeh, E., Khodabin, M. and Maleknedjad, K.
Numerical Solution of Nonlinear Stochastic Integral Equation
by Stochastic Operational Matrix Based on Bernstein Polynomials,
Bull. Math. Soc. Sci. Math. Roumanie,
2014, vol. 57(105), no. 1, pp. 3-12.

6. Mirazee, F. and Samadyar, N. Application of Hat Basis Functions for Solving Two-Dimensional
Stochastic Fractional Integral Equations,
Journal of Computational and Applied Mathematics,
2018, vol. 37, pp. 4899-4916.
DOI: 10.1007/s40314-018-0608-4.

7. Mohammadi, F. A Wavalet-Based Computational Method for
Solving Stochastic Ito -Volterra Integral Equations,
Journal of Computational Physics, 2015, vol. 298, pp. 254-265.
DOI: 10.1016/J.JCP.2015.05.051.

8. Mahmoudi, Y. Wavelet Galerkin Method for Numerical Solution
of Nonlinear Integral Equation, Applied Mathematics and Computation,
2005, vol. 167, no. 2, pp. 1119-1129.
DOI: 10.1016/j.amc.2004.08.004.

9. Maleknejad, K., Mollapourasl, R. and Alizadeh, M. Numerical
Solution of Volterra Type Integral Equation
of the First Kind with Wavelet Basis,
Applied Mathematics and Computation,
2007, vol. 194, no. 2, pp. 400-405.
DOI: 10.1016/j.amc.2007.04.031.

10. Mirzaee, F., Samadyar, N. and Hoseini, S. F. Euler Polynomial Solutions of Nonlinear
Stochastic Ito -Volterra Integral Equations,
Journal of Computational and Applied Mathematics,
2018, vol. 330, pp. 574-585.
DOI: 10.1016/j.cam.2017.09.005.

11. Mirazee, F., Alipour, S. and Samadyar, N. Numerical Solution Based on Hybrid of Block-Pulse and
Parabolic Function for Solving a System of Nonlinear Stochastic
Ito -Volterra Integral Equations of Fractional Order,
Journal of Computational and Applied Mathematics,
2019, vol. 349, pp. 157-171.
DOI: 10.1016/j.cam.2018.09.040.

12. Mirazee, F. and Samadyar, N. On the Numerical Solution of Stochastic Quadratic
Integral Equations via Operational Matrix Method,
Mathematical Methods in the Applied Sciences,
2018, vol. 41, no. 12, pp. 4465-4479.
DOI: 10.1002/mma.4907.

13. Mirazee, F. and Alipour, S. Approximation Solution of Nonlinear Quadratic Integral Equations
of Fractional Order via Piecewise Linear Functions,
Journal of Computational and Applied Mathematics,
2018, vol. 331, pp. 217-227.
DOI: 10.1016/j.cam.2017.09.038.

14. Mirazee, F. and Hamzeh, A. A Computational Method for Solving Nonlinear
Stochastic Volterra Integral Equations,
Journal of Computational and Applied Mathematics,
2016, vol. 306, pp. 166-0178. DOI: 10.1016/j.cam.2016.04.012.

15. Mirazee, F. and Samadyar, N. Numerical Solutions Based on Two-Dimensional Orthonormal
Bernstein Polynomials for Solving Some Classes of Two-Dimensional
Nonlinear Integral Equations of Fractional Order,
Applied Mathematics and Computation, 2019, vol. 344, pp. 191-203.
DOI: 10.1016/j.amc.2018.10.020.

16. Mirazee, F. and Samadyar, N. Using Radial Basis Functions to Solve Two Dimensional Linear
Stochastic Integral Equations on Non-Rectangular Domains,
Engineering Analysis with Boundary Elements,
2018, vol. 92, pp. 180-195.
DOI: 10.1016/j.enganabound.2017.12.017.

17. Mirazee, F. and Samadyar, N. Numerical Solution of Nonlinear Stochastic Ito -Volterra
Integral Equations Driven by Fractional Brownian Motion,
Mathematical Methods in the Applied Sciences,
2018, vol. 41, no. 4, pp. 1410-1423.
DOI: 10.1002/mma.4671.

18. Shang, X. and Han, D. Numerical Solution of Fredholm Integral Equations
of the First Kind by Using Linear Legendre Multi-Wavelets,
Applied Mathematics and Computation,
2007, vol. 191, no. 2, pp. 440-444.
DOI: 10.1016/j.amc.2007.02.108.

19. Yousefi, S. and Razzaghi, M. Legendre Wavelets Method for the
Nonlinear Volterra-Fredholm Integral Equations,
Mathematics and Computers in Simulation,
2005, vol. 70, no. 1, pp. 1-8.
DOI: 10.1016/j.matcom. 2005. 02. 035.

20. Yousefi, S. A., Lotfi, A. and Dehghan, M. He's Variational Iteration
Method for Solving Nonlinear Mixed Volterra-Fredholm Integral Equations,
Computers and Mathematics with Applications,
2009, vol. 58, no. 11-12, pp. 2172-2176.
DOI: 10.1016/j.camwa.2009.03.083.

21. Maleknejad, K., Khodabin, M. and Rostami, M.
Numerical Method for Solving \(m\)-Dimensional Stochastic
Ito Volterra Integral Equations by Stochastic Operational
Matrix Based on Block-Pulse Functions,
Computers and Mathematics with Applications,
2012, vol. 63, no. 1, pp. 133-143.
DOI: 10.1016/j.camwa.2011.10.079.

22. Mao, X. Approximate Solutions for a Class of Stochastic
Evolution Equations with Variable Delays. II,
Numerical Functional Analysis and Optimization,
1994, vol. 15, no. 1-2, pp. 65-76.
DOI: 10.1080/01630569408816550.

23. Mirzaee, F. and Hadadiyan, E.
A Collocation Technique for Solving Nonlinear
Stochastic Ito -Volterra Integral Equation,
Applied Mathematics and Computation,
2014, vo. 247, pp. 1011-1020.
DOI: 10.1016/j.amc.2014.09.047.

24. Heydari, M. H., Mahmoudi, M. R., Shakiba, A. and Avazzadeh, Z.
Chebyshev Cardinal Wavelets and Their Application in Solving
Nonlinear Stochastic Differential Equations with Fractional Brownian Motion, Communications in Nonlinear Science and Numerical Simulation,
2018, vol. 64, pp. 98-121.
DOI: 10.1016/j.cnsns.2018.04.018.

25. Heydari, M. H.
A New Direct Method Based on the Chebyshev Cardinal Functions
for Variable-Order Fractional Optimal Control Problems,
Journal of the Franklin Institute,
2018, vol. 355, no. 12, pp. 4970-4995 .
DOI: 10.1016/j.jfranklin.2018.05.025.

26. Heydari, M., Avazzadeh, Z. and Loghmani, G. B.
Chebyshev Cardinal Functions for Solving Volterra-Fredholm
Integro-Differential Equations Using Operational Matrices,
Iranian Journal of Science and Technology, A1,
2012, vol. 36, no. 1, pp. 13-24.
DOI: 10.22099/IJSTS.2012.2050.

27. Funaro, D.Polynomial Approximation of Differential Equations,
New York, Springer-Verlag, 1992.

28. Canuto, C., Hussaini, M., Quarteroni, A. and Zang, T. Spectral Methods in Fluid Dynamics,
Berlin, Springer, 1988.

29. Blyth, W. F., May, R. L. and Widyaningsih, P. Volterra Integral Equations Solved
in Fredholm form Using Walsh Functions, ANZIAM Journal,
2004, vol. 45(E), pp. 269-282. DOI: 10.21914/anziamj.v45i0.887.

30. Reihani, M. H. and Abadi, Z. Rationalized Haar Functions Method for Solving Fredholm
and Volterra Integral Equations, Journal of Computational and Applied Mathematics,
2007, vol. 200, pp. 12-20. DOI: 10.1016/j.cam.2005.12.026.

31. Parand, K. and Delkhosh, M. Operational Matrix to Solve Nonlinear Riccati
Differential Equations of Arbitrary Order, St. Pertersburg Polytechnical University Journal:
Physics and Mathematics, 2007, vol. 3, no. 3, pp. 242-254.
DOI: 10.1016/j.spjpm.2017.08.001.

32. Arato, M. A Famous Nonlinear Stochastic Equation (Lotka-Volterra Model with Diffusion),
Mathematical and Computer Modelling, 2003, vol. 38, no. 7-9, pp. 709-726.
DOI: 10.1016/S0895-7177(03)90056-2.