Abstract: Let \((\mathcal C_E, \|\cdot\|_{\mathcal C_E})\) be a Banach symmetric ideal of compact operators, acting in a complex separable infinite-dimensional Hilbert space \(\mathcal H\). Let \(\mathcal C_E^h=\{x\in \mathcal C_E : x=x^*\}\) be the real Banach subspace of self-adjoint operators in \((\mathcal C_E, \|\cdot\|_{\mathcal C_E})\). We show that in the case when \((\mathcal C_E, \|\cdot\|_{\mathcal C_E})\) is a separable or perfect Banach symmetric ideal (\(\mathcal C_E \neq \mathcal C_2\)) any skew-Hermitian operator \(H: \mathcal C_E^h\to \mathcal C_E^h\) has the following form \(H(x)=i(xa - ax)\) for same \(a^*=a\in \mathcal B(\mathcal H)\) and for all \(x\in \mathcal C_E^h\). Using this description of skew-Hermitian operators, we obtain the following general form of surjective linear isometries \(V:\mathcal C_E^h \to \mathcal C_E^h\). Let \((\mathcal C_E, \|\cdot\|_{\mathcal C_E})\) be a separable or a perfect Banach symmetric ideal with not uniform norm, that is \(\|p\|_{\mathcal C_E}> 1\) for any finite dimensional projection \(p \in\mathcal C_E\) with \(\dim p(\mathcal H)>1\), let \(\mathcal C_E \neq \mathcal C_2\), and let \(V: \mathcal C_E^h \to \mathcal C_E^h\) be a surjective linear isometry. Then there exists unitary or anti-unitary operator \(u\) on \(\mathcal H\) such that \(V(x)=uxu^*\) or \(V(x)=-uxu^*\) for all \(x \in \mathcal C_E^h\).
Keywords: symmetric ideal of compact operators, skew-Hermitian operator, isometry.
For citation: Aminov, B. R. and Chilin, V. I. Isometries of Real Subspaces of Self-Adjoint Operators in Banach Symmetric Ideals, Vladikavkaz Math. J., 2019, vol. 21, pp. 11-24. DOI 10.23671/VNC.2019.21.44607
1. Banach, S. Theorie des Operations Lineaires, Warsaw, 1932.
2. Lamperti, J. On the Isometries of Some Function Spaces, Pacific Journal of Mathematics, 1958, vol. 8, no. 3, pp. 459-466. DOI: 10.2140/pjm.1958.8.459.
3. Lumer, G. On the Isometries of Reflexive Orlicz Spaces, Annales de l'Institut Fourier, 1963, vol. 13, no. 1, p. 99-109. DOI: 10.5802/aif.132.
4. Zaidenberg, M. G. On Isometric Classification of Symmetric Spaces, Doklady Akademii Nauk SSSR, 1977, vol. 234, pp. 283-286 (in Russian).
5. Zaidenberg, M. G. A Representation of Isometries of Functional Spaces, Zhurnal Matematicheskoi Fiziki, Analiza, Geometrii [Journal of Mathematical Physics, Analysis, Geometry], 1997, vol. 4, no. 3, pp. 339-347.
6. Kalton, N. J. and Randrianantoanina, B. Surjective Isometries on Rearrangment Invariant Spaces, The Quarterly Journal of Mathematics, 1994, vol. 45, no. 3, pp. 301-327. DOI: 10.1093/qmath/45.3.301.
7. Braverman, M. Sh. and Semenov, E. M. Isometries on Symmetric Spaces,
Doklady Akademii Nauk SSSR, 1974, vol. 217, pp. 257-259 (in Russian).
8. Braverman, M. Sh. and Semenov, E. M. Isometries on Symmetric Spaces, Trudy NII Matem. Voronezh. Gos. Univ., 1975, vol. 17, pp. 7-18 (in Russian).
9. Arazy, J. Isometries on Complex Symmetric Sequence Spaces, Mathematische Zeitschrift, 1985, vol. 188, no. 3, pp. 427-431. DOI: 10.1007/BF01159187.
10. Aminov, B. R. and Chilin, V. I. Isometries and Hermitian Operators on Complex Symmetric Sequence Spaces, Siberian Advances in Mathematics, 2017, vol. 27, no. 4, pp. 239-252. DOI: 10.3103/S1055134417040022.
11. Arazy, J. The Isometries of \(\mathcal C_p\), Israel Journal of Mathematics, 1975, vol. 22, no. 3-4, pp. 247-256. DOI: 10.1007/BF02761592.
12. Fleming, R. J. and Jamison, J. E. Isometries on Banach Spaces: Vector-Valued Function Spaces, Chapman-Hall/CRC, 2008.
13. Sourour, A. Isometries of Norm Ideals of Compact Operators, Journal of Functional Analysis, 1981, vol. 43, no. 1, pp. 69-77. DOI: 10.1016/0022-1236(81)90038-0.
14. Aminov, B. R. and Chilin, V. I. Isometries of Perfect Norm Ideals of Compact Operators, Studia Math., 2018, vol. 241(1), pp. 87-99. DOI: 10.4064/sm170306-19-4.
15. Garling, D. J. H. On Ideals of Operators in Hilbert Space, Proceedings of the London Mathematical Society, 1967, vol. 17, no. 1, 115-138. DOI: 10.1112/plms/s3-17.1.115.
16. Nagy, G. Isometries of the Spaces of Self-Adjoint Traceless Operators, Linear Algebra and its Applications, 2015, vol. 484, pp. 1-12. DOI: 10.1016/j.laa.2015.06.026.
17. Bennett, C. and Sharpley, R. Interpolation of Operators, Academic Press Inc., 1988.
18. Simon, B. Trace Ideals and Their Applications, Mathematical Surveys and Monographs, vol. 120, 2nd edition, Providence, R.I., Amer. Math. Soc., 2005.
19. Kalton, N. J. and Sukochev, F. A. {Symmetric Norms and Spaces of Operators, Journal fur die Reine und Angewandte Mathematik, 2008, vol. 621, pp. 81-121. DOI: 10.1515/CRELLE.2008.059.
20. Lord, S., Sukochev, F. and Zanin, D. Singular Traces. Theory and Applications, Berlin/Boston, Walter de Gruyter GmbH, 2013.
21. Gohberg, I. C. and Krein, M. G. Introduction to the Theory of Linear Nonselfadjoint Operators, Translations of Mathematical Monographs, vol. 18, Providence, R.I., Amer. Math. Soc., 1969.
22. Krein, M. G., Petunin, Ju. I. and Semenov, E. M. Interpolation of Linear Operators, Translations of Mathematical Monographs, vol. 54, Providence, R.I., Amer. Math. Soc., 1982.
23. Lindenstrauss, J. and Tzafriri, L. Classical Banach Spaces, Berlin and N.Y., Springer-Verlag, 1996.
24. Dodds, P. G., Dodds, T. K. and Pagter, B. Noncommutative Kothe Duality, Transactions of the American Mathematical Society, 1993, vol. 339, no. 2, pp. 717-750. DOI: 10.2307/2154295.
25. Dragomir, S. S. Semi-Inner Products and Applications, N.Y., Hauppauge, Nova Science Publishers Inc., 2004.
26. Ayupov, Sh. and Kudaybergenov, K. 2-Local Derivations and Automorphisms on \(B(H)\), Journal of Mathematical Analysis and Applications, 2012, vol. 395, no. 1, pp. 15-18. DOI: 10.1016/j.jmaa.2012.04.064.
27. Dolinar, G., Guterman, A., Kuzma, B. and Oblak, P. Extremal Matrix Centralizers, Linear Algebra and its Applications, 2013, vol. 438, no. 7, pp. 2904-2910. DOI: 10.1016/j.laa.2012.12.010.
28. Schatten, R. Norm Ideals of Completely Continuous Operators, Berlin and N.Y.,
Springer-Verlag, 1960.
29. Baksalary, J. K. and Baksalary, O. M. Idempotency of Linear Combinations of Two Idempotent Matrices, Linear Algebra and its Applications, 2000, vol. 321, no. 1-3, pp. 3-7. DOI: 10.1016/S0024-3795(00)00225-1.
30. Bratteli, O. and Robinson, D. W. Operator Algebras and Quantum Statistical Mechaniks,
N.Y.-Heidelber-Berlin, Springer-Verlag, 1979.