Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
DOI: 10.23671/VNC.2016.2.5921
Inverse Problem for a Third Order Fredholm Integro-Differential Equation with Degenerate Kernel
Yuldashev T. K.
Vladikavkaz Mathematical Journal 2016. Vol. 18. Issue 2.
Abstract: It is considered the questions of one value solvability of the inverse problem for a third order nonlinear partial Fredholm type integro-differential equation with degenerate kernel. The method of degenerate kernel for second kind Fredholm integral equations is modified for the case of third order partial Fredholm type integro-differential equation. The Fredholm type integro-differential equation is reduced to a system of algebraic equations. By the aid of additional condition it is obtained a second kind nonlinear Volterra type integral equation with respect to main unknown function and a first kind linear Volterra type integral equation with respect to restore function. It is used the method of compressing maps, which gave us the real method of finding the solutions - the method of successive approximations. Further is defined the restore function.
Keywords: inverse problem, integro-differential equation, Fredholm type equation, degenerate kernel, system of algebraic equations, one valued solvability.
For citation: Yuldashev T. K. Inverse problem for a third order fredholm integro-differential equation with degenerate kernel // Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol.19, no. 2, pp. 76-85.
DOI 10.23671/VNC.2016.2.5921
1. Algazin S. D., Kijko I. A. Flatter plastin i obolochek [Flutter
plates and shells]. Moscow, Nauka, 2006. 248 p.
2. Shkhanukov M. Kh. Some Boundary value Problems for a Third Order
Equation Arising in the Simulation of Fluid Flow in Porous Media.
Differential Equations, 1982, vol. 18, no. 4, p. 689-699
[in Russian].
3. Andreev A. A., Yakovleva Yu. O. The Inherent Problem for a System of
Hyperbolic Differential Equations of the Third Order of General Form
with Characteristics Nonmultiple. J. of Samara State Technical
University. Ser. "Physical and Mathematical Sciences", 2013, vol.
30, no. 1, p. 31-36. DOI: 10.14498/vsgtu1182.
4. Beshtokov M. Kh. Apriore Estimates of Solutions of Nonlocal
Boundary value Problems for Pseudoparabolic Equation.
Vladikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.],
2013, vol. 15, no. 3, p. 19-36 [in Russian].
5. Zikirov O. S. Dirichlet Problem for Third Order Hyperbolic
Equations. Russian Mathematics, 2014, vol.58, no. 7, pp. 53-60.
DOI:10.3103/S1066369X14070068.
6. Sabitov K. B. Dirichlet Problem for a Third Order Equation of
Mixed-type in a Rectangular Domain. Differential Equations, 2011,
vol. 47, no. 5, p. 705-713. DOI: 10.1134/S0012266111050090.
7. Repin O. A., Kumykova S. K. The Problem with Shift for a Third-order
Equation with Discontinuous Coefficients. J. of Samara State
Technical University. Ser. "Physical and Mathematical Sciences",
2012, vol. 29, no. 4, p. 17-25. DOI: 10.14498/vsgtu1123.
8. Sopuev A., Arkabaev N. K. Conjugation Problem for a Linear
Pseudoparabolic Equations of the Third Order. Vestnik Tomskogo
gosudarstvennogo universiteta. Matematika. Mekhanika [Vestnik of
Tomsk State University. Mathematics. Mechanics], 2013, vol. 21, no.
1, pp. 16-23 [in Russian].
9. Denisov A. M. Vvedeniye v teoriyu obratnykh zadach [Introduction to
the Theory of Inverse Problem]. Moscow, Lomonosov Moscow State
University Press, 1994. 285 p.
10. Denisov A. M. Inverse Problem for a Quasilinear System of Partial
Differential Equations with a Nonlocal Boundary Condition. Comput.
Mathematics and Math. Physics, 2014, vol. 54, no. 10, p. 1513-1521.
DOI: 10.1134/S0965542514100066.
11. Kononenko L. I. Direct and Inverse Problems for the Singular Systems
with Slow and Fast Variables in Chemical Kinetics. Vladikavkazskij
matematicheskij zhurnal [Vladikavkaz Math. J.], 2015, vol. 17, no.
1, pp. 39-46 [in Russian].
12. Kostin A. B. The Inverse Problem of Recovering the Source in a
Parabolic Equation under a Condition of Nonlocal Observation.
Sbornik Mathematics, 2013, vol. 204, no. 10, pp. 1391-1434.
DOI:10.1070/SM2013v204n10ABEH004344.
13. Lavrent'ev M. M., Savel'ev L. Ya. Linear operators and ill-posed
problems. New York, Consultants Bureau, 1995. xiv+382 p.
14. Megraliev Ya. T. On Inverse Boundary value Problem for Elliptic
Equation of the Second Order with First Kind Integral Condition.
Trudy Instituta Matematiki i Mekhaniki Ural. Otd. RAN [Proceedings
of the Institute of Mathematics and Mechanics], 2013, vol. 19, no.
1, pp. 226-235 [in Russian].
15. Prilepko A. I., Kostin A. B. On Certain Inverse Problems for
Parabolic Equations with Final and Integral Observation. Sbornik
Mathematics, 1992, vol. 75, no. 2, pp. 473-490 [in Russian].
16. Prilepko A. I., Tkachenko D. S. Properties of Solutions of a
Parabolic Equation and the Uniqueness of the Solution of the Inverse
Source Problem with Integral over Determination. Comput. Mathematics
and Math. Phys., 2003, vol. 43, no. 4, pp. 537-546 [in Russian].
17. Romanov V. G. Inverse Problems of Mathematical Physics. Utrecht, VNU
Science Press, 1987. vii+224 p.
18. Sabitov K. B., Martem'yanova N. V. An Inverse Problem for an
Equation of Elliptic-Hyperbolic Type with a Nonlocal Boundary
Condition. Siberian Math. J., 2012, vol. 53, no. 3, pp. 507-519.
Doi: 10.1134/S0037446612020310.
19. Yuldashev T. K. An Inverse Problem for a Nonlinear
Integro-Differential Equation of the Third Order. Vestnik Samarskogo
gosudarstvennogo universiteta. Ser. "Estestvennonauchnaja''
[Vestnik of Samara State University. Ser. "Natural Sciences''],
2013, no. 1, pp. 58-66 [in Russian].
20. Yuldashev T. K. An Inverse Problem for Nonlinear
Integro-Differential Equations of Higher Order. Vestnik
Vorinezhskogo gosudarstvennogo universiteta. Ser. Fizika. Matematika
[Vestnik of Voronezh state university. Series "Physics &
Mathematics"], 2014, no. 1, pp. 145-155 [in Russian].
21. Yuldashev T. K. On an Inverse Problem for Linear Fredholm Partial
Integro-Differential Equation of the Fourth Order. Vestnik
Vorinezhskogo gosudarstvennogo universiteta. Ser. Fizika. Matematika
[Vestnik of Voronezh state university. Series "Physics &
Mathematics"], 2015, no. 2, p. 180-189 [in Russian].
22. Trenogin V. A. Funktsional'nyi analiz [Functional Analyses]. Moscow,
Nauka, 1980. 495 p.