Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru
Dear authors!
Submission of all materials is carried out only electronically through Online Submission System in
personal account.
DOI: 10.23671/VNC.2016.2.5918
Regularized Summation of Haar Series of Continuous Functions
Kazarian M. L.
Vladikavkaz Mathematical Journal 2016. Vol. 18. Issue 2.
Abstract: We study the problem of summation of Haar series of continuous functions. We present the proof of the stability and uniform convergence of Haar series regularized by generalized summation function for the class of continuous functions with approximate coefficients.
Keywords: Haar transformation, Haar series, Tikhonov regularization method, regularizing multiplier, class of functions \(S_p\), \(1\leq p<\infty\).
For citation: Kazarian M. L. Regularized summation of Haar series of continuous functions //
Vladikavkazskii matematicheskii zhurnal [Vladikavkaz Math. J.], vol.
19, no. 2, pp. 49-54.
DOI 10.23671/VNC.2016.2.5918
1. Kazarjan M. L. Issledovanie zadach cifrovoj obrabotki signalov
posredstvom diskretnyh ortogonal'nyh preobrazovanij na ustojchivost'
[Research of Digital Signal Processing Problems by a Discrete
Orthogonal Transformation on Sustainability. A Monograph].
Vladikavkaz, NOSU, 2009. 81p. [in Russian].
2. Kazarjan M. L. Haar Wavelet Transformation in the
Telecommunications System and their Research on Sustainability.
Telekommunikacii [The Telecommunications], 2014, no. 9, pp.7-13.
[in Russian].
4. Sobol' I. M. Mnogomernye kvadraturnye formuly i funkcii Haara
[Multidimensional Quadrature Formulas and Haar's Functions]. Moscow,
Nauka, 1969. 288 p. [in Russian].
5. Tihonov A. N On sustainable methods of summation of Fourier series.
Doklady AN SSSR [Reports of the USSR Academy of Sciences], 1964,
vol. 156. no. 2. pp. 268-271 [in Russian].
6. Fihtengol'c G. M. Kurs differencial'nyh i integral'nyh ischislenij.
T. 2 [Course of Differential and Integral Calculus. Vol. 2].
Moscow, Nauka, 1964. 463 p.
7. Haar A. Zur Theoria der orthogonalen Funktionsysteme. Math. Fnn.
1910, vol. 69. pp. 331-371.
8. Shovengerdt R. A. Distancionnoe zondirovanie. Metody i modeli
obrabotki izobrazhenij [Remote Sensing. Models and Metods for Image
Processing]. Moscow, Tekhnosfera, 2010. 560 p.