ISSN 1683-3414 (Print)   •   ISSN 1814-0807 (Online)
   Log in
 

Contacts

Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru

 

 

 

яндекс.ћетрика

DOI: 10.23671/VNC.2012.14.10970

The Riemann-Hilbert boundary value problem for generalized analytic functions in Smirnov classes

Klimentov S. B.
Vladikavkaz Mathematical Journal 2012. Vol. 14. Issue 3.
Abstract:
Under study is the Riemann-Hilbert boundary value problem for generalized analytic functions of a Smirnov class in a bounded simply connected domain whose boundary is a Lyapunov curve or a Radon curve without  cusps. The coefficient of the boundary value condition is  assumed continuous and perturbed by a bounded
measurable function or continuous and perturbed by a bounded variation function. The paper uses the special representation for generalized analytic functions of Smirnov classes from the author's paper [16],  which  reduces the problem to that for  holomorphic functions. The problem for the holomorphic functions was under study in the author's papers [1, 2].
Keywords: Riemann--Hilbert boundary value problem, generalized analytic functions, Smirnov classes
Language: Russian Download the full text  
For citation: Klimentov S. B. The Riemann-Hilbert boundary value problem for generalized analytic functions in Smirnov classes.Vladikavkazskij matematicheskij zhurnal [Vladikavkaz Math. J.], 2012, vol. 14, no. 3, pp.63-73. DOI 10.23671/VNC.2012.14.10970


← Contents of issue
 
  | Home | Editorial board | Publication ethics | Peer review guidelines | Current | Archive | Rules for authors | Send an article |  
© 1999-2023 ёжный математический институт