ISSN 1683-3414 (Print)   •   ISSN 1814-0807 (Online)
   Log in
 

Contacts

Address: Vatutina st. 53, Vladikavkaz,
362025, RNO-A, Russia
Phone: (8672)23-00-54
E-mail: rio@smath.ru

 

 

 

яндекс.ћетрика

DOI: 10.23671/VNC.2013.4.7343

Extremal values of the volume of 3-dimensional parallelepipeds with a given intrinsic diameter

Rasskazova N. V.
Vladikavkaz Mathematical Journal 2013. Vol. 15. Issue 4.
Abstract:
It  is proved that a parallelepiped with relation \(a:b:c=1:1:\sqrt{2}\) for its edge lengths has maximal volume among all rectangular parallelepipeds with a given intrinsic diameter.
Keywords: rectangular parallelepiped, geodesic (intrinsic) diameter, volume
Language: Russian Download the full text  
For citation: Rasskazova N. V. Extremal values of the volume of 3-dimensional parallelepipeds with a given intrinsic diameter. Vladikavkazskii matematicheskii† zhurnal [Vladikavkaz Math. J.], vol. 15, no. 4, pp. 44-47. DOI 10.23671/VNC.2013.4.7343


← Contents of issue
 
  | Home | Editorial board | Publication ethics | Peer review guidelines | Current | Archive | Rules for authors | Send an article |  
© 1999-2023 ёжный математический институт