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Abstract. In this paper, we give some necessary and sufficient conditions for an Archimedean vector
lattice A to be of finite dimension. In this context, we give three characterizations. The first one contains
the relation between the vector lattice A to be of finite dimension and its universal completion A“. The
second one shows that the vector lattice A is of finite dimension if and only if one of the following
two equivalent conditions holds : (a) every maximal modular algebra ideal in A* is relatively uniformly
complete or (b) Orth(A4, A*) = Z(A, A*) where Orth(A4, A*) and Z(A, A") denote the vector lattice of
all orthomorphisms from A to A* and the sublattice consisting of orthomorphisms 7 with |7(z)| < Alz|
(z € A) for some 0 < X € R, respectively. It is well-known that any universally complete vector lattice A is
of the form C*°(X) for some Hausdorff extremally disconnected compact topological space X. The point
x € X is called o- isolated if the intersection of every sequence of neighborhoods of z is a neighborhood
of z. The last characterization of finite dimensional Archimedean vector lattices is the following. Let A
be a vector lattice and let A"(= C* (X)) be its universal completion. Then A is of finite dimension if
and ounly if each element of X is o-isolated. Bresar in [1] raised a question to find new examples of zero
product determined algebras. Finally, as an application, we give a positive answer to this question.
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1. Introduction

Throughout the paper, R and C denote real numbers and complex numbers, respectively

and let N = {1,2,...}. For a set A, A™ denotes the cartesian product A x ... xA, n € N.

n times
The Gelfand—Mazur Theorem states that if A is an associative normed real division

algebra, then A is isomorphic to R, C or the quaternion field. For the details, we refer
to [2]. For the case of lattice-ordered algebras, Huijsmans [3| proved that an Archimedean
lattice-ordered algebra with unit element e > 0 in which every positive element has a positive
inverse is lattice and algebra isomorphic to R. Uyar [4] gave an alternative proof to the result
of Huijsmans for Banach lattice algebras. Later on, these two results are generalized and
combined in [5] by using an easy observation as follows:
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Theorem 1. Let A be an Archimedean lattice-ordered algebra with unit element e > 0.
Then the following statements are equivalent:
(i) Every positive element has a positive inverse.
ii) A is a d-algebra and every positive element has a positive inverse.
iii) A is an f-algebra and each positive element has a positive inverse.
iv) A is an almost f-algebra and each positive element has an inverse.
v) A is an almost f-algebra and each nonzero element has an inverse.
(vi) A is order and algebra isomorphic to R.
If one of the statements above is satisfied and A is a normed lattice-ordered algebra with
lle]l = 1, then A is also isometric to R.

(
(
(
(

As far as we know, no attention at all has been paid in the literature to the problem when a
lattice-ordered algebra is of finite dimension. The aim of this paper is to give a positive answer
to this problem. In connection with our problem, Bresar studied the class of finite dimensional
spaces which are zero product determined. Recall that an algebra A over a field K is said to
be zero product determined if for every bilinear map f : A x A — B, where B is an arbitrary
vector space over K, with the property that for all z,y € A, f(x,y) = 0 whenever zy = 0, is
of the form f(x,y) = ®(xy) for some linear map ® : A — B. This concept was introduced
in [1]. The original motivation for this concept was problems on the zero product preserving
linear maps. Recently, Bresar [1] proved the following result.

Theorem 2. A finite dimensional algebra is zero product determined if and only if
it is generated by idempotents.

Bresar pointed out that the main purpose of the paper [1] was to find new examples of zero
product determined algebras, but ultimately it is restricted to an unexpected characterization
of finite-dimensional algebras that are generated by idempotents and the initial problem
of finding new examples still remains open. Moreover, the problem of finding other classes
of algebras for which the characterization of Theorem 1 holds is fully open.

As an application of our study, we will give a new class of non-finite dimensional zero
product algebras for which the characterization of the previous theorem holds.

2. Preliminaries

In order to avoid unnecessary repetitions, we assume that all vector lattices under
consideration are Archimedean.

In the following lines, we recall some definitions and basic facts about vector lattices,
lattice-ordered algebras and multilinear maps.

For the unexplained terminology on vector lattices, lattice-ordered algebras and multilinear
maps, we refer the reader to [6, 7, 8, 9.

Given a vector lattice A, the set AT = {a € A : a > 0} is called the positive cone of A.
Let a,e € A, then e is called a component of a if e A (a — ) = 0.

An algebra A which is simultaneously a vector lattice such that the partial ordering and
the multiplication in A are compatible, that is a,b € AT implies ab € A™, is called lattice-
ordered algebra (briefly a (-algebra). An f-algebra A is called an f-algebra if A verifies the
property that a Ab =0 and ¢ > 0 imply ac Ab = ca ANb = 0. Any f-algebra is automatically
commutative and has positive squares. An £-algebra A is called an almost f-algebra whenever
it follows from a A b = 0 that ab = ba = 0. An (-algebra A is called a d-algebra if A verifies
the property that a Ab =0 and ¢ > 0 imply ac A bc = ca A cb = 0.

The vector lattice A is called Dedekind complete if for each non-empty subset B of A
which is bounded above, sup B exists in A. The vector lattice A is called laterally complete
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if every orthogonal system in A has a supremum in A. If A is Dedekind complete and
laterally complete, then A is called universally complete. Every vector lattice A has a universal
completion A", this means that there exists a unique (up to a lattice isomorphism) universally
complete vector lattice A“ such that A can be identified with an order dense sublattice of A“
(see [6, Section 8, Exercise 13| for an interesting approach to the existence of the universal
completion by using orthomorphisms).

A vector lattice A is said to have the countable sup property, if whenever an arbitrary subset
D has a supremum, then there exists an at most countable subset C' of D with sup C = sup D.
A Dedekind complete vector lattice with the countable sup property is called super Dedekind
complete vector lattice.

Let A be a vector lattice. A subset S of AT is called an orthogonal system of A if 0 ¢ S
and u Av = 0 for each pair (u,v) of distinct elements in S. It follows from Zorn’s lemma that
every orthogonal system of A is contained in a maximal orthogonal system.

A subset S in a vector lattice E is called solid if it follows from |u| < |v| in E and v € §
that u € S. A solid vector subspace of a vector lattice is called an ideal. The ideal P in a vector
lattice is prime whenever it follows from inf(a,b) € P that at least one of a € P or b € P
holds. A principal ideal of a vector lattice F is any ideal generated by a singleton {u} denoted
by E,. Clearly, E, ={v € E: 3\ > 0 such that |v| < A|ul}.

An order closed ideal in a vector lattice is called a band. A band B of a vector lattice F is
said to be a projection band if B @ B? = E where B¢ denotes the disjoint complement of B.
A vector lattice has the projection property if every band is a projection band.

Let A be a vector lattice and v € A™. Then the sequence (a,)nen in A is called (v) relatively
uniformly convergent to a € A if for every real number € > 0, there exists a natural number n.
such that |a, — a|] < ev for all n > n.. This will be denoted by a,, — a (v). If a,, — a (v)
for some 0 < v € A, then the sequence (ay,)nen is called (relatively) uniformly convergent
to a, which will be denoted by a,, — a (r.u). The notion of (v) (relatively) uniformly Cauchy
sequence is defined in the obvious way. A vector lattice is called (relatively) uniformly complete
if every relatively uniformly Cauchy sequence in A has a unique limit. Relatively uniformly
limits are unique if A is Archimedean.

Let A and B be vector lattices. A multilinear map ¥ : A™ — B is said to be positive
whenever (ai,...,a,) € (AT)" implies ¥ (ay,...,a,) € BT. A multilinear map ¥ is said to
be orthosymmetric if for all (a1,...,a,) € A" such that a; A a; = 0 for some 1 < 7,5 < n
implies ¥ (ay,...,a,) = 0.

3. Main results

We start with some auxiliary results which will be used in the sequel.

Proposition 1. Let A be a vector lattice and n € N. Then the followings are equivalent:

WA=6L®I®...D I, for some simple order ideals I, 1I,...,1I, in A.

2) A=Rzy @ Rxe @ ... ® Ray, for some elements x1,x3,...,x, € A.

< (1)=(2) Since I; is simple for each ¢ = 1,2...,n, and according to [3, Proposition 1|,
it follows that I; = Rx; for some elements x1,xs,...,x, € A. Consequently, A = Rx1 ®Rxo®
... ® Rz, for some n € N and some elements x1,x9,...,x, € A.

(2)=-(1) This direction is trivial. >

DEFINITION 1. The depth of a vector lattice is the supremum (possibly infinite) of the
lengths of maximal orthogonal system.



Characterizations of Finite Dimensional Archimedean Vector Lattices &9

Proposition 2. Let A be a vector lattice. Then the followings are equivalent:

1) A has the projection property and its depth is finite;

2) A=Rzy @Ry @ ... ® Ra, for some n € N and some elements x1,xs,...,x, € A.

< (1)=(2): Let n € N be the depth of A and {ej,eq,...,e,} be the maximal orthogonal
system of length n in A. Since A has the projection property, A = {e;}* @ {es}“ ... {e;}“ o
@ {en}% Let 1 < i< nbefixed and y € {e;}%. Then y = y* —y~ where yT,y~ € {e;}%.
Let f1 = Ty (e;) and fo = Ty (e;) where Tyyryad and 7 o 1a are the band projections

on {ey,es,...,e,} with ranges {yT}9 and {y*}?, respectively. It is easy to see that the system
{e1,€2,...,€i-1, f1, f2,€it+1,---,€n} is an orthogonal system of length n + 1. Therefore, either
f1 =0 or fg =0.

CAsE 1: If f; =0, thene; = fo € {y+}d. Hence {y+}dd c {e;}™ {y+}d and so yT = 0.

CASE 2: If f, =0, then e; = f1 € {y"}%. Hence {y~ 1™ c {e;}™ c {y"}* c {y~}" and
soy~ =0.

Then, the band {e;}% is totally ordered for all 1 < i < n. By [3, Proposition 1],
{ei}dd =Re; forall 1 <i<n. Then A=Re; PRes & ... D Re, for some n € N.

The implication (2)=-(1) is trivial. >

To clarify next result, we give the following well-known lemma.

Lemma 1. Let A be a universally complete vector lattice with a weak order unit e. Then
there exists a unique multiplication on A such that A is an f-algebra with e as a unit element.

DEFINITION 2. A vector lattice A is said to be hyper-Archimedean if all quotient
spaces E/I, where I is an order ideal in A, are Archimedean.

Several characterizations of hyper-Archimedean vector lattices are known (see, for exam-
ple, [10], [11, Theorem 37.6, 61.1 and 61.2]). We collect some of them in the following lemma.

Lemma 2. A vector lattice A is hyper-Archimedean if and only if any of the following
equivalent conditions holds.

(i) Every prime ideal in A is a maximal ideal.

(ii) Every ideal in A is uniformly closed.

(iii) The span of the set of all components of u is the principal ideal generated by u for
allu e AT,

DEFINITION 3. A lattice-ordered algebra A is called Artinian (respectively, super Artinian)
if A satisfies the descending chain condition on order ideals (respectively, on bands).

DEFINITION 4. A lattice-ordered algebra A is called Noetherian (respectively, super
Noetherian) if A satisfies the ascending chain condition on order ideals (respectively,
on bands).

DEFINITION 5. Let A be a vector lattice. An element x of A is said to be super atomic
if the oder ideal A, generated by x is of finite dimensional.

We now give the following result which shows the relation between the dimensions
of a vector lattice and its universal completion.

Proposition 3. Let A be a vector lattice and A" be its universal completion. Then A
is finite dimension if and only if A" is finite dimension.

<1 Let A be a finite dimension vector lattice. Since A is finite dimension and the elements of
any finite orthogonal system of A are linearly independent, it follows that A has {e1,e2,...,€e,}
as a maximal orthogonal system of length n. Let y € {ei}dd for a fixed index ¢ with 1 < i < n.
Then y = y* —y~ with y*,y~ € {e;}™. If y© % 0 and y~ # 0, it is easy to see that the
system {e1,e2,...,¢i—1,y", ¥, €it1,...,e,} is an orthogonal system of length n + 1, which
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is a contradiction. Hence, y© = 0 or ¥y~ = 0. Then, the band {ei}dd is totally ordered for all
1 < ¢ < n. By [3, Proposition 1], {ei}dd = Re; for all 1 < i < n. Hence, the band generated
by e; in A" will be equal to Re;. Then A* = Re; ®Res @ ... B Re,, for some n € N. Hence A
is finite dimension. Conversely, if A" is finite dimension, then so is clearly A. >

REMARK 1. If a vector lattice A is finite dimension then A = A".
We now have all ingredients to give the first main result of this section.

Theorem 3. Let A be a vector lattice and A" be its universal completion. Then the
followings are equivalent:
(1) A has the projection property and its depth is finite.
2)A=La&LL®...® I, for some simple order ideals I, 15, ..., I, in A, and n € N.
(3) A" is super Dedekind complete and Artinian.
(4) A" is super Dedekind complete and super Artinian.
(5) A" is super Dedekind complete and Noetherian.
(6) A" is super Dedekind complete and super Noetherian.
(7) A" has at least one super atomic weak order unit.
(8)

< (1)= (2) This follows from Propositions 1 and 2.

(2) = (3) Since A = Rx; ® Rxa & ... @ Rz, for some n € N and some elements
Z1,Ta,...,Ty € A, it follows that A* = A. Hence, the set of all order ideals of A is finite and
then A is Artinian.

(3)=-(4) This path is trivial.

(4)=(6) Let (By),cy be an increasing sequence of bands in A*. Then (Bg)neN is a dec-
reasing sequence of bands in A“. By the fact that A is super Artinian, it follows that there
exists ng € N such that Bg = Bgo for all n > ng. Consequently, B, = B, for all n > ny.
Therefore A" is super Notherian.

(6)=(7) Let S ={e; :i € I'} be a maximal orthogonal system in A*. Then e = sup {e; :
i € I} is a weak order unit of A“. Since A" is super Dedekind complete, it follows that there
exists an at most countable subset 7' = {e,, : n € N} of S such that e = sup {e,, : n € N}.
Let (Bp)nen be an increasing sequence of bands in A% where B,, = {\/Kignei}dd. Since A"
is super Notherian, it follows that there exists ng € N such that B, = B, for all n > ny.
Consequently, {V1<i<noei}dd = {\/Kignei}dd for all n > ng. Therefore, e, = 0 for all n > ng
and then S is a finite set. Let S = {fj,,jn € Jn} be an orthogonal system of A" such that
en = sup {fj,,jn € Jn} for all 1 < n < ng. Since the set S" = {fj,,jn € Jn, 1 < n < ng}
is a maximal orthogonal system of A", it follows that S’ is a finite set. Using the same
argument with each f; , we deduce that there exist mg € N and a maximal orthogonal
system K = {k,,1 < n < mp} of A" with e = sup{k,,1 < n < mg} such that K will be
the finest orthogonal system meaning that we cannot use the decomposition process another
time. Consequently, AY = A%l ® A%z ®...P A’,gmo. Let 1 <n<npandlet 0 <z < k.
Let Hy,, = {y €Al ,y= Zlgz’gm a;h; where o; € R and h; is a component of k:n} It is not
hard to prove that H, is a hyper-Archimedean vector sublattice of A“. Since K is a finest
orthogonal system, it follows that the set of all components of k,, is {0, k,, }.

By Freudenthal Spectral Theorem, there exists x,, = Zlgz‘gm a;h; = ok, with x,, —
(r.u). Therefore, there exists a,, € R such that x = a,k,. Hence, Hy, = Aj for all
1 <n<ng.

A is finite dimension.

Since any relatively uniformly complete hyper-Archimedean vector lattice is of finite
dimension (see [11, Theorems 37.6, 61.4], [12, Theorem 3|), and A}, is relatively uniformly
complete, it follows that AY is of finite dimension. Therefore, e is super atomic.
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(7)=(8) Let e be a super atomic weak order unit of A*. Then AY is of finite dimension.
Since x Ane — x (r.u) for all 0 < =z € A", it follows that A" is of finite dimension.

(8) < (1) This equivalence is trivial.

(1)=-(5) Since A" is of finite dimension, the set of all order ideals of A" is finite and then
A" satisfies the ascending chain condition on ideals and so we are done. >

Let A be a vector lattice and E be a vector sublattice of A. A positive linear operator
m: E — Ais said to be a positive orthomorphism if w (x) Ay = 0 whenever z Ay = 0 for each
x,y € E. An orthomorphism is the difference of two positive orthomorphisms. Orth(E, A)
will denote the vector lattice of all orthomorphisms from E to A. Z (E, A) will denote the
sublattice of Orth(E, A) consisting of those 7 for which there is a non-negative real A with

A <7(x) < A\

for all x € ET. Let A be a lattice-ordered algebra. M (A) denotes the set of all maximal two-
sided algebra ideals. We consider a subset m(A) of M (A) consisting of relatively uniformly
closed ideals.

All prerequisites are made for the second main result of this section.

Theorem 4. Let A be a vector lattice and let A" be its universal completion unital
f-algebra. Then the following conditions are equivalent:

(1) A is finite dimension.

(2) Every maximal modular algebra ideal in A" is relatively uniformly closed.

(3) Orth(A, A") = Z(A, AY).

< (1)=(2) Since A is of finite dimension, then A" is of finite dimension so that A* becomes
a Banach lattice. It is well-known that any maximal modular algebra ideal of a commutative
Banach algebra is closed. So we are done.

(2) = (3) Since any maximal modular algebra ideal of A" is relatively uniformly closed
and by using the main result of [13], we deduce that Orth(A") = Z(A"). Moreover, it is not
hard to prove that Orth(A") = Orth(A, A*) and Z(A, A*) = Z(A").

(3)= (1) Since Orth(A") = Orth(A, A%), Z(A, A*) = Z(A") and Orth(A4"%) = Z(A, AY),
it follows that Orth(A") = Z(A") = A". Consequently, A" becomes a Banach lattice and it is
well-known that any Banach universally complete vector lattice is of finite dimension. Hence,
A is of finite dimension and we are done. >

It is well-known that any universally complete vector lattice A is of the form C'* (X) for
some Hausdorff extremally disconnected compact topological space X (i. e. the closure of every
open set of X is also open). The symbol C° (X)) denotes the collection of all continuous
functions f : X — [—o00, +0oo] for which the open set dom f = {x € X : —c0 < f (z) < +o0}
is dense in X. It is well-known that C'*° (X) can be equipped with a unital f-algebra
multiplication. Moreover, C°°(X) is a Dedekind complete f-algebra with e := xx as
a unit element. The orthomorphisms in C°°(X) are the pointwise multiplications, so
Orth(C*(X)) = C>*(X).

In order to reach our aim, we need the following;

Theorem 5 [14, 15]. Given an extremally disconnected compact space X, the following
properties of a point x € X are pairwise equivalent:

(1) The intersection of every sequence of neighborhoods of = is a neighborhood of x.

(2) x € dom f for all f € C°(X).

(3) If f € C*°(X) and f(x) =0, then f =0 in some neighborhood of x.

DEFINITION 6. The point x is called o-isolated (or a P-point, or bounded) whenever z
enjoys any of the properties in Theorem 5.



92 Polat F., Toumi M. A.

Theorem 6 [14, 15|. The maximal algebra ideals of C*°(X) for x € X are of the form
(C®(X))z :={f € C>®°(X) : f=0 in some neighborhood of x}.

We now have gathered all ingredient for the third result of this section.

Theorem 7. Let A be a vector lattice and let A* (= C* (X)) be universal completion
unital f-algebra of A. Then the following conditions are equivalent:

(1) A is of finite dimension.

(2) Each element of X is o-isolated.

< (1) = (2) Since A is of finite dimension, then A" is of finite dimension; therefore
A" becomes a Banach unital f-algebra and it is well-known that any maximal algebra ideal
of a commutative Banach algebra is closed. By Theorem 6, any maximal algebra ideal is of the
form (Cso(X))s for some z € X and since (Coo(X))z (Coo(X))s is relatively uniformly closed,
then z is o-isolated (see [14, 15]).

(1) = (2) Since any point of X is o-isolated, it follows that any maximal algebra ideal
of A" is relatively uniformly closed (see [14, 15]). By the main result of [13], we deduce
that Orth(A") = Z(A"). Since Orth(A") = Z(A") = A%, A* becomes a Banach lattice and
it is well-known that any Banach universally complete vector lattice is of finite dimension.
Hence, A is of finite dimension and we are done. >

Next, we will give a new class of non-finite dimension zero product algebras for which the
characterization of Theorem 2 holds.

Theorem 8. Let A be an Archimedean unital f-algebra. Then A is zero product deter-
mined if and only if A is hyper-Archimedean.

< For the proof of “only if” part, we will use the same argument as in [16, Theorem 8.
Assume that every bilinear map f : A x A — B, where B is an arbitrary vector space over K,
with the property that for all z,y € A, f(z,y) = 0 whenever zy = 0, is of the form f(z,y) =
® (zy) for some linear map ¢ : A — B. Suppose, per contra, that A is not hyper-Archimedean.
It follows that there exists a prime ideal I which is not maximal. Hence the quotient A/I is
linearly ordered space that is not isomorphic to R (see [11, Theorem 27.3 and 33.2]). Let T,
y in A/I that are linearly independent. Hence T + 7, T are linearly independent. By using
Zorn’s Lemma, it is not hard to prove that ¥, ¥ are contained in a Hamel basis H; and T+ 7,
T are contained in a Hamel basis Hy such that Hy # Hs. Then there exist two linear maps
f:+A/I — Rsuch that f(Z) =1 and f(y) = —1 and g : A/I — R such that g(T +7) = 1
and ¢g(7) = —1. Let the bilinear map ¥ : A x A — R be defined by ¥(a,b) = f(@)g(b), for
all a,b € A. Let a,b € A such that ab = 0. Since [ is a prime ideal, it follows that a € [
or b € I. Hence @ = 0 or b = 0. Consequently, f(@) = 0 or g(b) = 0. Therefore ¥(a,b) = 0.
Hence, ¥ is orthosymmetric. Whereas, ¥(z,y) = f(Z)g(y) # f([@)g(T) = ¥(y,z). That is ¥
is not symmetric. Hence W is not of the form ®(xy) for some linear map ® : A — R, which is
a contradiction.

Then “if” part remains. We will use the same argument as in [17, Theorem 1]. Let
VU:AxA— B, where B is an arbitrary vector space over K, with the property that for
all z,y € A, U(z,y) =0 whenever zy = 0.

Let z,y € A. It follows that » = >7' | aje; and y = > U, B;f;, where e; and f; are
components of e = |z| + |y|. Then

V(z,y) = Z @i BV (ei, f5) - (1)
1<i<n,
1<gsm
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Let efl be the disjoint complement of e;. Hence e = ¢; + egl where e; A efl = 0. Then
fi=fine=fiA (ei+e?) = (fj /\ei) + (fj/\efl).

Since (fj A efl) Ae; =0, then (fj A egl) e; = 0. Consequently,

\I/(el-,fj) = \Ii(ei, (f] A el-) + (f] A 6?)) = \Il(ei,fj A ei).

Moreover e; = e; Ae =¢e; A (fj + f]d) = (fj A ei) + (ei A fjd) Hence,

Ulei, f;) = V(e fiNes) = U((fj Nes) + (e A fD), fi Aei).
Since (e; A f) A (fj Aei) =0, it follows that (e; A f§1) (f; Ae;) =0 and then
Wles, fi) =V (fj Nei, i ANei) =U(fj,e)
By using the same argument, we prove that
(e, fi) =Wl fjNei) =TU(fj Aei fi Aei) = U(fj,e).
Therefore, in view of equality (1), we have

V(z,y) =V(y,x). (2)

Let u be the unit of A and let z € A. Then the following bilinear map ¥, : A x A — B
defined by ¥, (z,y) = ¥ (xz,y), for all z,y € A, satisfies the property that ¥(z,y) = 0
whenever xy = 0. Therefore, by using the argument as for ¥, we deduce that U, (z,y) =
U, (y,x) = ¥, (2,y) = ¥, (y,2), for all z,y € A. In particular if z = w, it follows that
U (z,y) =¥, (y,e) = ¥ (zy,e). Consequently, ¥ is not of the form & (zy) , where ®: A — B
is defined by ® (z) = ¥ (z,¢), for all € A and we are done. >

It should be noted that a relatively uniformly complete unital hyper-Archimedean f-al-
gebra is of finite dimension (see |11, Theorems 37.6, 61.4|, [12, Theorem 3]). Consequently,
we have the following characterization.

Theorem 9. Let A be a relatively uniformly unital f-algebra. Then the following proper-
ties are equivalent.

(1) A is zero product determined.

(2) A is hyper-Archimedean.

(3) A is of finite dimension.
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XAPAKTEPUSAIINA KOHEYHOMEPHBIX
APXVUMEJIOBBIX BEKTOPHBIX PEHIETOK

[onat @., Toymu M. A.

Ansortanus. Crarhs HOCBANIEHA YCIOBUAM KOHEIHOMEPHOCTY aPXMME/I0BbIX BEKTOPHBIX perreTok. Haii-
JIEHbl TPU HOBBIE XaPAKTEPW3AINU TAKUX PENeTOK. IlepBasi OMMCHIBAET KOHEYHOMEDHOCTh BEKTOPHOMN
pemeTkn A Ha sS3bIKe €e yHWBEpPCAJIhHOro momoJiHeHust A“. BTopasi yTBepKIaeT, 9TO BEKTODHAs pe-
nleTKa KOHEYHOMEDHA B TOM M TOJBKO B TOM CJIy4dae, KOIJa BBIIIOJIHEHO OJHO U3 CAEAYIOIIUX JBYX
yemosus: (a) BCAKWI MaKCHMAJTHHBIA MOIYJISIPHBI anre0pamdeckuii maeag B AY paBHOMEPHO TIOJIOH;
(6) Orth(A,A%) = Z(A, A"), tne Orth(A, A") BexTopHas pemerka Bcex opromMopdusmos u3 A B A",
a Z(A, A*) — nompemerka, coCTOsAMAsA U3 OPTOMOPMU3MOB T, yA0BAETBOpsIommx ycaosmio |7 (x)| < Alz|
(z € A) npu HEKOTOPOM TIOJIOXKUTETHHOM A € R. X0pOIIO N3BECTHO, YTO BCsKasl YHUBEPCAIBHO TIOJIHAS BEK-
TOpHAdA pemeTka npeacrasasgerca B suge C°° (X)) mia HEKOTOPOTO SKCTPEMATHLHO HECBA3HOTO KOMITAKTA, X .
Touky x € X Ha3BIBAIOT 0-U30JIMPOBAHHOIN, €C/IN TIepeceverne JTI000H M0CIe0BaATeIbHOCTA OKPECTHOCTEH
TOYKM X SBJISETCS OKPECTHOCTHIO TOYKM Z. TpeThsi XapaKTepu3alus COCTOUT B TOM, 9TO BEKTOPHAsS pe-
mretka A ¢ yamBepcambabiM pacmmpenmem A = C'°°(X) KoOHEYIHOMEPHA TOTJIA M TOJIBKO TOTJA, KOTJA
KaxKas Touka B X o-m3o/mpoBaHa. B KauecTBe NPUIIOKEHNS IOy YeH [IOJIOKUTEIBHBIA OTBET Ha BOIPOC
Bpesapa 0 CymecTBOBAHUN HOBBIX TIPUMEDPOB AJITe0p, OMpPeesseMbIX HYJIEBBIMUA TTPOU3BEICHUSIMHY.

KuiroueBsble ciioBa: BeKTOPHas penierka, f-aiaredpa, rumnep-apXuMeI0BOCTb, yHUBEPCATbHA TOJIHOTA.



