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1. Introduction

The aim of this note is to examine a Boolean valued interpretation of the concept of
atomic Banach lattice and to give a complete description of the corresponding class of injective
Banach lattices. Some representation and isometric classification results for general injective
Banach lattices were announced in [1, 2].

Section 2 collects some needed Boolean valued representation results following [3]. In
Section 3 we demonstrate that a Boolean valued interpretation of atomicity yields some
“module atomicity” over a certain f-subalgebra of the center. Section 4 deals with Boolean
valued Banach lattices of summable families, which turn out to be “building blocks” for
general module atomic injective Banach lattices. Section 5 exposes the main results on
representation and classification of injective Banach lattices with atomic Boolean valued
representation, i.e. those which are atomic with respect to their natural f-module structure.

The needed information on the theory of Banach lattices can be found in [1, 5]. Recall
some definitions and notation. A real Banach lattice X is said to be injective if, for every
Banach lattice Y, every closed vector sublattice Yy C Y, and every positive linear operator
Ty : Yo — X there exists a positive linear extension T': Y — X of Ty with ||To|| = ||T']]; see
[5, Definition 3.2.3]. Equivalently, X is an injective Banach lattice if, whenever X is lattice
isometrically imbedded into a Banach lattice Y, there exists a positive contractive projection
from Y onto X; one more equivalence definition states that each positive operator from X
to any Banach lattice admits a norm preserving positive extension to any Banach lattice
containing X as a vector sublattice, see [3, Theorem 5.10.6]. This concept was introduced
by Lotz [6]; a significant advance towards the structure theory of injectives was made by
Cartwright [7] and Haydon [8].
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In what follows X stands for a real Banach lattice. We denote by P(X) the Boolean
algebra of all band projections in X. A crucial role in the theory of injective Banach lattices
is played by the concept of M-projection. A band projection 7 in a Banach lattice X is
called an M-projection if ||z|| = max{||rz||, |7+z|} for all z € X, where nt:= Iy — 7. The
collection M(X) of all M-projections in X is a subalgebra of the Boolean algebra P(X).

Throughout the sequel B is a complete Boolean algebra with unit 1 and zero O, while
A:= A(B) is a Dedekind complete unital AM-space such that B is isomorphic to P(A). The
unit of A is also denoted by 1. A partition of unity in B is a family (b¢)¢ez C B such that
VgeE be = 1 and be Ab, = O whenever £ # 1. We let := denote the assignment by definition,
while N, Q), and R symbolize the naturals, the rationals, and the reals.

2. Boolean Valued Representation

Boolean valued analysis is an useful tool in studying of injective Banach lattices [9]. We
need some Boolean valued representation results as presented in [3] and [25].

Applying the Transfer and Maximum Principles to the ZFC-theorem “There exists a field
of reals” we find an element 2 € V® for which [Z is a field of reals] = 1. We call 2
the reals within V(). The following remarkable result due to Gordon [28] tells us that the
interpretation of the reals in V®) is a universally complete vector lattice with the Boolean
algebra of band projections isomorphic to B.

Theorem 2.1. Let Z be the reals within V®) . Then 2| (with the descended operations
and order) is a universally complete vector lattice with a weak order unit 1:= 1". Moreover,
there exists a Boolean isomorphism x of B onto P(#/) such that the equivalences

x(b)xr =x0b)y <= b< [z =y],
x(b)z < x(b)y <= b< [z <y]

hold for all x,y € #Z] and b € B.

< See [3, Theorem 2.2.4] and [25, Theorem 10.3.4]. >

DEFINITION 2.2. A complete Boolean algebra of M -projections in X is an arbitrary order
complete and order closed subalgebra B C M(X). A Banach lattice X is said to be B-cyclic
whenever it is a B-cyclic Banach space with respect to a complete Boolean algebra B of M-
projections. If X has the Fatou and Levi properties (see [3, 5.7.2]), then M(X) itself is an
order closed subalgebra of the complete Boolean algebra P(X).

(G)

DEFINITION 2.3. Let A = Z| be the bounded part of the universally complete vector
lattice Z]; i.e., A is the order-dense ideal in #Z| generated by the weak order unit 1:= 1" €
#|. Take a Banach space 2" within V® and put 27} := {z € 27| : |z| € A}. Equip
2| with some mized norm by putting ||z| := |||z|||c for all x € X, where the order unit
norm || - || is defined as ||[Alloc := inf{0 < @ € R: |\ < al} (A € A). In this situation,
(ZU, |l - |) is a Banach space called the bounded descent of Z". The terms B-isomorphism
and B-isometry mean that isomorphism or isometry under consideration commutes with the
projections from B, see [3, 5.8.9].

Theorem 2.4. A bounded descent of a Banach lattice from the model V® is a B-cyc-
lic Banach lattice. Conversely, if X is a B-cyclic Banach lattice, then in the model V(®
there exists up to the isometric isomorphism a unique Banach lattice 2 whose bounded
descent is isometrically B-isomorphic to X. Moreover, B = M(X) if and only if [there is no
M-projection in 2" other than 0 and 2] = 1.

< See [3, Theorem 5.9.1]. >
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DEFINITION 2.5. The element 2~ € V® from Theorem 2.1 is said to be the Boolean-
valued representation of X.

Theorem 2.6. Let X be a Banach lattice with the complete Boolean algebra B = M(X)
of M-projections, A be a Dedekind complete unital AM-space such that P(A) is isomorphic
to B. Then the following assertions are equivalent:

(1) X is injective.

(2) X is lattice B-isometric to the bounded descent of some AL-space from V(®),

(3) There exists a strictly positive Maharam operator ® : X — A with the Levi property
such that X = LY(®) and ||z|| = ||®(|z|)||e for all z € X.

(4) There is a A-valued additive norm on X such that (X, |-|) is a Banach—-Kantorovich
lattice and ||z|| = H|3:|H00 for all x € X.

< See [3, Theorem 5.12.5]. >

Theorem 2.7. Suppose that X is a Banach lattice and 2 is the completion of the metric
space X" within V®) . Then [ 2 is a Banach lattice] = 1 and 2| is lattice B-isometric to
C4(Q, X) equipped with the norm ||| = sup{[l¢(g)]| : ¢ € dom(p) C Q} (¢ € C%(Q, X)).

< The proof is a due modification of [25, 11.3.8]. >

3. Boolean Valued Atomicity

In this section we present Boolean valued interpretation of atomicity.

DEFINITION 3.1. A positive element = of a B-cyclic Banach lattice X is said to be B-
indecomposable or a B-atom if for any pair of disjoint elements y,z € X, with y + 2z < «
there exists a projection 7 € B such that 7y = 0 and 71z = 0, while X is called B-atomic if
the only element of X disjoint from every B-atom is the zero element.

Denote by at(Z2") and B-at(X) the sets of atoms in 2~ and B-atoms in X, respectively.
Let at1(Z2") := {z € at(Z") : ||z|| = 1}, while B-at;(X) consists of all z € B-at(X) with
||lrz|| =1 for all w € B. It is easy to see that B-aty(X) = {z € B-at(X) : |z| = 1}.

Proposition 3.2. Let X be a B-cyclic Banach lattice identified with the bounded descent
2| of a Banach lattice 2, its Boolean valued representation 2 € V®) . Then the following
assertions hold:

(1) B-at(X) = at(2)J.

(2) B-aty(X) = at1(2)).

(3) X is B-atomic if and only if [Z" is atomic] = 1.

< (1) Observe that z € at(2") if and only if z € 27 and for any two positive disjoint
elements z1,x9 € 2 with x; + 22 < = we have x; = 0 or 9 = 0. Now, given z € at(2"){
with y + z < x for some disjoint y,z € Xy, we put b:= [y = 0] and 7 := x(b). Since
[y #0— z=0] = 1, we have [y # 0] < [z = 0] and thus b* = [y # 0] < [z = 0]. By (G) we
have 7y = 0 and 72 = x(b*)z = 0. Thus, at(2")|} C B-at(X) and for the converse inclusion
the argument is similar.

(2) Taking into account the representation B-at; (X ) = {x € B-at(X) : |z| = 1} the claim
follows easily from the following chain of equivalences:

zeati](Z) <= [reati(Z)] =1 <= [rcat(X)] =[|z]l2 =1 =1
— zeB-at(Z) A |z| =1 < =z € B-at;(X).
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(3) Let for a while L, I, and 1L stand for disjoint complements in 2", X = 27|}, and 27},
respectively. The third claim is immediate from the first one, since the disjoint complement
and the descent commute: (A1)} = (A})L, see [3, 1.5.3]. Indeed,

(AN = (AN X = (AD' N X = (ALn X)F N X = (A)*,

hence putting A:= at(.2") and making use of (1) we deduce that at(.2")* = {0} within V(®)
if and only if (B-at(X))* = {0}. >

Corollary 3.3. Let B, X, and 2" be the same as in Proposition 3.2 and A = A(B). Then
the following assertions hold:

(1) z € X, is a B-atom if and only if for each 0 < y < x there exists A € A withy = Az.

(2) If x and y are B-atoms in X then there exist a pair of disjoint projections 7,p € B
such that mx L 7y, pr = Au and py = pu for some pu, A € Ay and u = x + y.

< Interpreting in the model V®) the well-known claims corresponding to that particular
case when B = {0, Ix} (see [13, Theorem 26.4.]) and using Proposition 3.2 yields the required
properties. >

DEFINITION 3.4. Given a cardinal v, say that a B-cyclic Banach lattice X is purely (B, v)-
atomic if X = g+ for some subset %y C B-at1(X) of cardinality v and for every nonzero
projection m € B and every subset 2 C B-aty(7X) with 71X = 2+ we have card(2) > 7.
Evidently, X is purely ({0, Ix},y)-atomic if and only if X is atomic and the cardinality of
aty1(X) is v or, equivalently, X is atomic and the cardinality of the set of atoms in B(X)
equals «y. In this case we say also that X is y-atomic.

Proposition 3.5. A B-cyclic Banach lattice X is purely (B, y)-atomic for some cardinal
if and only if [y" is a cardinal and 2 is v"-atomic | = 1.

< Sufficiency. Assume that 4" is a cardinal and 2 is v"-atomic within V® . The latter
means that 2 is atomic and card(at;(2")) = 7" within V). If A:= at;(2") then there
exists ¢ € VB such that [¢ : v — A is a bijection] = 1. Note that ¢] embeds 7 into A
by [3, 1.5.8] and A} = B-at;(X) by Proposition 3.1. It follows that the set 2 := ¢](v) of
cardinality « is contained in B-at;(X) and X = 2+, since A = 21 and 2" = AL, Take
b € B and a set 2’ of cardinality S which is contained in B-at;(X) and generates bX, i.e.
bX = (2')*+. Then 21 is of cardinality card(8") and 2 = (2'1)*+ within the relative
universe VIO, By [3, 1.3.7] [y = card(y") < card(8") < 8] = 1 and so v < S.

Necessity. Assume now that X is purely (B,~)-atomic and X = 2+ for some 2 C B-
aty(X) of cardinality 7. Then within V®) we have A:= 21 C aty(2°), 2 = AL and and
the cardinalities of A and 7" coincide, i. e. card(A) = card(y”"). By [3, 1.9.11] the cardinal
card(y") has the representation card(y") = mixa<yba”, where (ba)a<y is a partition of
unity in B. Tt follows that b, < [A*+ = X and A is of cardinality o] = 1. If b, # O
then (bo A A)t+ = by A 2 and b, A A is of cardinality card(y") = o < " in the relative
universe VPl (Concerning by A A and by A 2" and their properties see [3, 1.3.7].) It is
casy that by A A = (b, 2)7T and so (bo2)*+ = bX. By hypothesis X is purely (B, v)-atomic,
consequently, a > card(b,Z) = v, so that a = =, since a < y if and only if a” < +”. Thus,
card(y") = 7" whenever b, # O and 7" is a cardinal within V&), >

DEFINITION 3.6. Let v is a cardinal. A complete Boolean algebra B (as well as its Stone
representation space) is said to be y-stable whenever V®) = 4% = card(y"), i.e. [y is a
cardinal | = 1. An element b € B is called v-stable if the relative Boolean algebra [O, b] is
~-stable, see [25, Definition 12.3.7]. Finally, say that a partition of unity (7, )yer in B with I’
a set of cardinals is stable if 7, is y-stable for all v € I'.
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Theorem 3.7. Let X be a B-atomic B-cyclic Banach lattice. There exist a set of
cardinals I and a partition of unity (m) er such that B, := [O,n,] is y-stable and 7, X is
purely (B.,,y)-atomic for all v € T.

< If a B-cyclic Banach lattice X is B-atomic then its Boolean valued representation 2
is atomic within V® according to Proposition 3.1. Denote o := card(at;(2")). By [3,
1.9.11] 79 is a mixture of some set of relatively standard cardinals. More precisely, there are
nonempty set of cardinals I' and a partition of unity (b)er in B such that = mix,cp b,7"
and V®) = 4" = card(y") with B, := [0, b,] for all v € T. It follows that b, A 2~
is atomic Banach lattice and " = card(aty(b, A 27)) within VB, Tt remains to apply
Proposition 3.5. >

4. The Banach Lattices I'(I', A) and Cx(Q,!*(T"))

We now consider some special injective Banach lattices that are building blocks for the
class of all B-atomic injective Banach lattices. Recall that A = A(B).

Given a non-empty set I, denote by I1(I'") € V(® the internal Banach lattice of all
summable families x:= (zy),ern in Z with the norm ||z 1= >, cpa [z4].

Let I*(T', A) stand for the vector space of all order summable families in A, i.e.

INT,A):= {X T = A x| = O—Z Ix(v)| € A}.

yel’
The order on [}(I', A) is defined by letting x < y if and only if x(7) < y(v) for all v € T.
Evidently, I'(T',A) is an order ideal of the Dedekind complete vector lattice AT, hence so
is [T, A). Moreover, I*(T,A) equipped with the norm [|x| := [||x|;]l (x € I}(T,A)) is a
B-cyclic Banach lattice, since B = B(A).

Proposition 4.1. ['(I'") is a Boolean valued representation of I'(T', A) and thus [* (', A)
and [*(T"){} are lattice B-isometric.

< Straightforward verification shows that [}(T', A) is a Banach f-module over A, see [3,
Definitions 2.11.1 and 5.7.1]. The modified ascent mapping x + x7 is a bijection from (%{)"
onto (Z"")], see [3, 1.5.9]. It follows from [3, 2.4.7] that |-|, is the bounded descent of
| - |l1 and hence x € I*(T,A) if and only if [x? € [}(I'")] = 1. Moreover, in this event
[1xl; = |IxTlli] = 1 so that the modified descent induces an isometric bijection between
IY(T, A) and (I'T"){}. Making use of the definition of modified descent it can be easily checked
that this bijection is A-linear and order preserving. >

Proposition 4.2. The Banach lattice I'(T', A) is B-atomic and injective with M(X) iso-
morphic to B. Moreover, I*(T, A) is purely (B,~)-atomic if and only if [y" = card(T")] = 1.

< By Theorem 2.6 (2) and Propositions 3.2 and 4.1 X is injective with M(X) ~ B and
B-atomic. The second part follows from Propositions 3.5 and 4.1, since {!(I'") is card(I™")-
atomic within V®, >

Proposition 4.3. The norm completion of R*-normed space I*(T')" within V®) is a Ba-
nach lattice which is lattice isometric to the internal Banach lattice I1(T'").

< Denote by £ the completion of I*(T')" inside V(B). Let A be the set of all norm-one
atoms in ['(T") which is of course bijective with I'. Then A" and I'* are also bijective and
A" can be considered as the set of all norm-one atoms in [}(I'"). Denote by Q-lin(A) the
set of all linear combinations of the members of A with rational coefficients. Then by [12,

8.4.10] we have (Q-lin(A))" = Q"-lin(A"). Clearly, Q"-lin(A") is a dense sublattice in [*(T"),
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while (Q-lin(A))" is a dense sublattice in I}(T')" and thus in %}, since Q-lin(4) is dense in
I*(T"). Moreover, the norms induced in (Q-lin(A4))" by {*(I'") and I*(T')" coincide. Indeed, if
r € (Q-lin(A))" is of the form ), . (k) u(k) whithn € N, r : n — Q, and u : n — A, then
rhint = QN ut it — AN and 2" = ), o A r"(k)u”(k); therefore,

lelly = llall* = (32, @) =D 1 ®)] = el

It follows that .%; and ['(I'") are lattice isometric. >

Corollary 4.4. Let Q be the Stone representation space of B = P(A). Then the injective
Banach lattices I'(T', A) and Cx(Q, 1 (T)) are lattice B-isometric.

<1 This is immediate from Theorem 2.7 and Proposition 4.3. >

Corollary 4.5. Given an arbitrary infinite cardinals v; and ~s, we may find a Boolean
algebra B such that the injective Banach lattices I*(y1, A) and ' (y2, A) are lattice B-isometric
provided that A = A(B). If Q is the Stone representation space of B then the injective Banach
lattices Cy(Q, 1'(y1) and Cx(Q, 1 (12)) are also lattice B-isometric.

<1 The claim follows from Proposition 4.3 and Corollary 4.4 making use of the cardinal
collapsing phenomena: There exists a complete Boolean algebra B such that the ordinals 7
and v4 have the same cardinality within V® see [3, 1.13.9].

DEFINITION 4.6. A B-cyclic Banach lattice X is called B-separable, if there is a sequence
(z5,) C X such that the norm closed B-cyclic subspace, generated by the set {bz,, : n € N, b €
B}, coincides with X. In more detail, X is called B-separable whenever for every x € X and
0 < £ € R there exist an element z. € X and a partition of unity (m,)nen in B such that
|z — || < e and 7Tz = @, for all n € N. It can be easily seen that X is B-separable if and
only if its Boolean valued representation is separable within V® . Denote by w the countable
cardinal and put ! := [}(w).

Corollary 4.7. For every infinite cardinal vy, there exists a Stonean space () such that the
injective Banach lattice Cy(Q,1' (7)) is B-separable, with B standing for the Boolean algebra
of the characteristic functions of clopen subsets of ().

<1 Apply Corollary 4.5 with ~; := v and <2 := w, where w is the countable cardinal.
It follows that Cx(Q, I'(v) and Cyx(Q,I'(w)) are lattice B-isometric. Moreover, [I*(w”) is
separable] = 1 by transfer principle. Taking into account Proposition 4.1 it remains to
observe that [2" is separable] = 1 if and only if 27|} is B-separable. >

5. The Main Results

Now we are able to state and prove the main representation and classification results for
B-atomic injective Banach spaces.

DEFINITION 5.1. Let X be an injective Banach lattice. Say that X is centrally atomic
if X is B-atomic with B = M((X). According to corollary 3.3 this amounts to saying that there
is no nonzero element in X disjoint from all A-atom, while a A-atom is any element x € X
such that the principal ideal generated by x is equal to Az:= {Az : X\ € A}. Given a family of
Banach lattices (X, || ||y),er, denote by (Z?er b’YX)loo the [°°-sum, the Banach lattice of all
Ler With x(y) € X, for all v € I and [|x||:= sup{||x(7)[ly : 7 € '} < 0.

Lemma 5.2. For a centrally atomic injective Banach lattice X there exist a set of cardi-
nals I" and a stable partition of unity (7 ) er in M(X) such that 7, X is purely (y,B.)-atomic
with B, := [O, m,] for all v € ' and injective and the representation holds:

@
X ~p (Zwer bWX)loo.

families x:= (x(7))
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<1 This is immediate from Proposition 3.7. >

Lemma 5.3. Suppose that the injective Banach lattices C4(Q,1 (7)) and Cx(Q,1(6))
are lattice B-isometric, where () is the Stone space of B, while v and § are infinite cardinals.
If B is v-stable and d-stable then v = 4.

< Tf Ou(Q,11(T)) and Cy(Q, 1 (A)) are lattice B-isometric then V®) =« (y4) and 11(5")
are lattice isometric” and thus V®) = card(y") = card(6"). It remains to observe that B is
y-stable (d-stable) if and only if V®) = card(y") = 4" (respectively card(6") = 6"). >

Theorem 5.4. Let X be a centrally atomic injective Banach lattice. Then there is a set
of cardinals T' and a stable partition of unity (m,)yer in B = M(X) such that the following

lattice B-isometry holds:
S|
X =5 (X Fny),.

where A, = myA (y € I'). If a partition of unity (ps)sea in B satisfies the same conditions as
(7y)~er, thenT' = A, and my = p, for all y € T

<1 The required representation follows from Proposition 4.2 and Lemma 5.2.

Assume now that a partition of unity (ps)sca in B satisfies the same conditions as (74)er-
Fix 6 € A and put 0,5 := m,ps for arbitrary v € I'. If 0,5 # 0, then the injective Banach
lattices I!(v,0,5A) and I*(3,0,5A) are lattice [D, 04, ]-isometric to the same band o5, X. By
Lemma 5.3 v = 0 and thus A C I" and p; < 7y for all § € A. Similarly, I' C A and ps > 7y
forallyeT. >

REMARK 5.5. Let @ be the Stone representation space of B. Corollary 4.4 enables us to
replace I'(v,Ay) by C(Q~,1'(7)) in Theorem 5.4 with a stable partition of unity (Q4) er
in he Boolean algebra of clopen subsets of ). Moreover, if some partition of unity (Pj)sca
satisfies the same conditions, then I' = A, and P, = Q, for all y € T".

Corollary 5.6. Let X be an injective Banach lattice and () the Stone representation space
of B =M(X). If X is B-separable, then X is lattice B-isometric to Cy(Q,1'), I' = I} (w).

< In Theorem 5.4 each component [! ('y, Aw) is B,-separable and hence its Boolean valued
representation is a separable Banach lattice which is lattice isometric to the internal Banach
lattice I'(w”). It follows that I'(v,A,) is lattice B,-isometric to Cx(Q,!') for all v € T
by Proposition 4.1 and Corollary 4.4. From this it is obvious that X is B-isometric to
C#(Q, ll). >

Proposition 5.7. A B-cyclic Banach lattice is atomic if and only if it is B-atomic and
the Boolean algebra B is atomic.

< The complete Boolean algebra B is atomic if and only if B = Z2(A) for some set A
and then X is the [*°-sum of a family of Banach lattices (X,)qea. This [*°-sum is evidently
atomic if and only if X, is atomic for all a € A. >

The following corollary should be compared with [7, Theorem 5.6].

Corollary 5.8. An injective Banach lattice X is atomic if and only if there is a set of
cardinals I' such that the following lattice isometry holds:

X (Zir ll(v)))lw'

< In Remark 5.5 each @), is a one-point space by Proposition 5.8 and hence C4 (Qw I*(v))
is lattice isometric to I'(v). >

DEFINITION 5.9. The partition of unity (7y)yer in B = M(X) satisfying the claim of
Theorem 5.4 is called the decomposition series of X and is denoted by d(X). Say that
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the decomposition series d(X) = (my)yer and d(Y') = (py) er of centrally atomic injective
Banach lattices X and Y are congruent if there exists a Boolean isomorphism 7 from M(X)
onto M(Y') such that 7(my) = p, for all v € T".

Theorem 5.10. Centrally atomic injective Banach lattices X and Y are lattice isometric
if and only if the Boolean algebras M(X) and M(Y') are isomorphic and the decomposition
series d(X) and d(Y') are congruent.

< Sufficiency. Let X and Y be centrally atomic injective Banach lattices with d(X) =
(7y)~ver and d(Y) = (py)yer and let 2" and % be their respective Boolean valued repre-
sentations. We identify X and Y with 27|} and %}, respectively. Denote B:= M(X) and
D:= M(Y) and assume that there exists a Boolean isomorphism 7 from B onto D such that
7(my) = py for all v € I'. Recall that there is a bijective mapping 7* : V® — v®) such that
a ZFC-formula p(z1, . . ., z,) is true within V®) if and only if o(7*x1, ..., 7z, ) is true within
V®) for all z1,...,2, € VB see [3, 1.3.1, 1.3.2, and 1.3.5 (2)]. It follows that 7*(.2) is an
atomic injective Banach lattice within V(®). Moreover, the mapping z — 7*(z) (z € 2°|}) ia
a lattice isometry from 2"| onto 7*(2"){. If a = card(at1(Z")) and 8 = card(at1(%)), then
(o) = mixyer 7(my)7" and f = mixyer py”, so that 8 = 7%(«). By [3, 1.3.5(2)] we have
7*(a) = card(at1(7*(27))) and card(at1(#')) = card(at1(7*(2"))). It follows that 7%(.Z")
and ¢ are lattice isometric and hence 7*(2"){} and #|} are lattice B-isometric.

Necessity. Suppose that h is a lattice isomorphism from X onto Y. Then the map-
ping 7 from B onto I defined by 7(w) = ho 1o h~! is a Boolean isomorphism. Moreover,
h(B-at1(7X)) = B-at1(7(m)Y). Now it can be easily verified that 7.X is ([O, 7], v)-atomic if
and only if 7(m)Y is ([O, 7(7)],v)-atomic. It follows that d(X) and d(Y') are congruent. >

Corollary 5.11. Let X be a centrally atomic injective Banach lattice. Then there is
a family of Stonean spaces (Q-) er, with I" a set of cardinals, such that Q. is vy-stable for all
v € I' and the following lattice B-isometry holds:

X =p (Zip Cy(Qy, ll(v))>lw-

If some family (Ps)sca of Stonean spaces satisfies the above conditions, then I' = A, and P,
is homeomorphic with Q- for all v € I

< This is immediate from Theorem 5.10 and since Corollary 4.4 (see Remark 5.5). >

DEFINITION 5.12. The second B-dual of a B-cyclic Banach space is defined by X##:=
(X#)*:= LB(X#,A). A B-cyclic Banach space is said to be B-reflexive if the image of X
under the canonical embedding X — X## coincide with X##, see [3, p. 316].

Theorem 5.13. Let X be a B-reflexive injective Banach lattice with B = M(X). Then
there are a sequence of Stonean spaces (Q)ken, and an increasing sequence of naturals (ny)
such that the following lattice B-isometry holds:

X ~ ( ZfeN C Qi 1! (nk))>z°°'

If some family (Py)ren of Stonean spaces satisfies the above conditions, then Qy, and Py are
homeomorphic for all k € N.

< Again identify X with 27|}, where 2" is an AL-space in V®)_ It follows from Theorem
[3, Theorem 5.8.12] that 2*| = Z|* and 2**| = 2 |##. Therefore, X is B-reflexive if
and only if [2" is reflexive | = 1. Since a reflexive AL-space is finite-dimensional, we have

1=[3neN")dim(2Z)=n] = \/neN[[dim(ﬁX) =n"].
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This relation enables us to choose a countable partition of unity (b,) in B such that b, < [Z
is a n”-dimensional AL-space]. Pick the sequence (ny) of indices of nonzero projections in

(bn)

and denote by @ the Stonean space of a Boolean algebra By := [0, by, ]. Now, by the

Transfer Principle we conclude that V) |= «b, A 2 is lattice isometric to I'(n})”. The
proof is concluded with the help of Theorem 5.10 taking into consideration that for each finite
cardinal vy every complete Boolean algebra is v-stable and 4" is a finite cardinal within V&, >

10.

11.

12.
13.
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ATOMNYHOCTDB B MTHBEKTUBHBIX BAHAXOBBIX PEIIETKAX

Kycpaes A. T

Ilenn 3amMeTKM — pacCMOTPETh OYIeBO3HAYHY IO WHTEPITPETAIUIO TIOHSATHST ATOMIYECKON HaHAXOBOM pernreT-
KW ¥ JaTh MOJIHOE OMMCAHNE COOTBETCTBYIOIIErO KIACCa NHHEKTUBHBIX DAHAXOBBIX PEIIEeTOK.

KurroueBble cjioBa: MHHbEKTUBHAS 6AHAXOBA PEIETKA, aTOMUYeCKas OAHAXOBa pelreTka, 6yJIeBO3HATHOEe
MIpeICTaB/IeHNE, KIACCU(MUKAITISI.



