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BERNSTEIN-NIKOLSKII TYPE INEQUALITY
IN LORENTZ SPACES AND RELATED TOPICS

H. H. Bang, N. M. Cong

Dedicated to academician S. M. Nikolskit
on the occasion of his 100th-birthday

In this paper we study the Bernstein—Nikolskil type inequality, the inverse Bernstein theorem and some
properties of functions and their spectrum in Lorentz spaces L”%(R").

1. Introduction

The study of properties of functions in the connection with their spectrum has been
implemented by many authors (see, for example, [1-16] and their references). Some
geometrical properties of spectrums of functions and relations with the sequence of norms
of derivatives (in Orlicz spaces and Ng-spaces) were studied in [1-9]. In this paper we give
some results on the Bernstein—Nikolskii type inequality, the inverse Bernstein theorem and
some properties of functions and their spectrum in Lorentz spaces LP4(R™).

Let us recall some notations. If f € S’ then the spectrum of f is defined to be the support
of its Fourier transform f (see [14, 15]). Denote sp(f) = suppf and |E| the Lebesgue measure
of E. For an arbitrary measurable function f : R™ — C (or R), one defines (see [17-22])

Ap(y) == {z e R": [f(z)| > y}|, y>0,
f(t) :=inf{y > 0: A¢(y) <t}, t>0,

ﬂT(tl/Pf*(t))qﬂ Y e p <o, 0<q<
po t ) p ) q o0,
sup ¢/ f*(t), 0<p< oo, ¢=oc.

t>0

1fllp.q :=

Then the Lorentz spaces LP? (on R™) are by definition the collection of all measurable
functions f such that || f/,, < oo. The case p = 00, 0 < ¢ < oo is not considered since

o¢]
Il (f*(t))q% < oo implies f = 0 a. e. (see [17]). Furthermore, there is an alternative
0

representation of || - ||, 4 (see, for example, [17, 20])

o) 1/
(af 5N ()dy) ', 0<p<o0, 0<g< o,

1
sup y)\f/p(
y>0

I fllp.g =
), 0<p<oo, ¢g=o0.
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In this paper, for p, q fixed, we always let r such that 0 <r < 1, r < g, and r < p. There
are two useful analogues of f* used in some below proofs: Let (see [17])

1/r
PO =) = s (ﬁ b/ | f(x)]’"d:c) ot

Then, (f*)* = f**, and

¢ 1/r
(F*) ( / Tdy) — ), >0,
0

It is known that f*, f** and f*** are non-negative, non-increasing, and

If f* is replaced by f** or f** in the expression of || f[|,, then one gets by definition || f||;*,

~ | =

or || fll;: respectively. It is well-known that [| - [[* is a norm when 1 < p < 00, 1 < ¢ < 0
(set 7 =1 in this case), and moreover, L% can be considered as Banach spaces if and only if
p=g=1lorl<p<oo,1<q< oo (see|17]). In particular there is at that an useful relation
among || - [lp.q, || - [l and | - [l (see [17])

<A < I < 0/ =) f llpa-
Henceforth, € is a compact subset of R”, and

u—{§€Rn |§J’ V]?]_l }’
where v = (v1,...,v,), v; >0, j =1,...,n. Denote by
LBt ={feLPinS : sp(f) C Q}.

When Q = A, LE? is denoted again by L7, Similarly one has Sq or S, respectively.

2. Results

First we give some results on the Bernstein—Nikolskii type inequality for Lorentz spaces.

Lemma 1. Let 0 < p; < p2 < 00, 0 < q1,92 < 00. Then for each multi-index «, there
exists a positive constant ¢ such that for all p € Sq

[1D%@llps.g0 < cllepllp.an- (1)

< Step 1 ( p2 = g2 = 00 and o = (0,...,0)). Let ¢ € S such that 1&(:6) = 1 in some
neighbourhood of 2. Then for any = € R”

[e.o]

o(@)] = o+ ¥z /w- (w)ldy < /cp(x—-)*(t)w*(t)dt
0
/ o <ol / T
0 0

P _
Wl 1=y allellos Pl o0

< Il el e [ €770 )it = L

0
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This deduces at once

lollee < (20l 111 ) Il

p1
Step 2 (= (0,...,0)). We only have to show that there is a constant ¢ such that

||SOHP27Q2 < CH@thOOv ¢ € Sq, (2)
where 0 < p; < p2 < 00, 0 < g2 < 0.
Indeed, using the alternative representation of | - ||, 4 , we have
oo oo
||90||p2,q2 — Q2/yq2_1)\?02/p2 (y)dy = g2 / y(I2—1)\$2/P2 (y)dy
0 0
el 0 el ( :
21,192 ag(pe=p1) _q
—a [ (W)= Ry <l [ E
0 0
__ b ||| 22PL/P2|| || 22(P2—P1) /P2 < P2 H |22
T pa—py oo ¥ p2 — pree?

where the last inequality follows from Step 1. Therefore (2) is obtained.

Step 3. We prove (1) when p1 = ps = p, g1 = q2 = q. If ¢ € Sq then D%p € Sq for every
multi-index a. Denote by My the Hardy—Littlewood maximal function of ¢, then (see [14,
p. 16]) for all x € R”

ID%(x)] < e (M) (@),

where ¢ is a constant depending only on 2. Moreover it is known that for every measurable

function f (see, for example, [18, 19])
¢
“ifre
0

(DY)* < 1 (Me)Y™)" = ex (Mg )) " < o™

and consequently,

:~o-|>i

Hence,

*k >k

(3)
Step 4. The general case follows immediately from (2), (3) and the property
Il lpco < || - [|p,g- The proof so has been fulfilled. >
The theorem below is an extension of the Theorems 1.4.1(i) and 1.4.2 in [16].

Theorem 1. Let 0 < p; < py <00, 0<q1,q2 <00
(i) If o is a multi-index, then there exists a constant ¢ such that for all f € L™

1D%¢llp.q < c2llellyg

1D fllps.go < el fllpr.an-

(ii) L% is a quasi-Banach space for arbitrary 0 < p,q < oo, and the following topological
embeddings hold
SQ C Lghlh C LZ;ZQJZQ C S/.
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< (1): Without loss of generality, one can assume that g; = oo and 0 < p1, p2, g2 < oo (note
that the case p; = 0o and so, p1 = p2 = q1 = g2 = 00, was proved in [16, Theorem 1.4.1]). Let
p1 < p < 00, and let ¢ € S such that ¢(0) = 1 and sp(¢) C {z : |z| < 1}. For each f € L™
and 0 < 0 < 1, put fs(x) = p(dz)f(x). Then fs — f on R™ and f5 € Sq,, where

0 = {yeR”: Jx € Q such that |z — y gl}.
Consequently, it follows from Lemma 1 that

1fllp < Lim | fsllp < e Mm || £5lp1 00 < rll@lloollfllpr.00;
5N\0 3N\0

where ¢ is independent of § and f. Hence f € Lf,. Now the argument in [16, Theorem 1.4.1]
implies that D fs — D f in L*° (and this show that the conclusion is true if py = g3 = 0).
Lemma 1 therefore deduces again that

1D fllpa.a2 < %\\D“fallpm Sce %Hfgl!mm < cll@lloollfllprco < € llellooll fllprans

where ¢ depends only on p1, p2, g2 and Q.

(ii): First, we show that LF? is a quasi-Banach space for any 0 < p,¢ < oo. Let {f]} be
any fundamental sequence in L{;?. Then there is a function f € LP? such that f; — f in LP4
as j — 00.

Moreover, part (i) above with a = (0,...,0) and ps = g2 = oo shows that {f;} is also
a fundamental sequence in L*°. Then it implies by standard arguments that f; — f in L™,
and consequently, f; — f in S’. Hence fj — fin S and this yields that sp(f) C Q. Therefore
fe qu and f; — f in L”9, and it follows that ngz,q is a quasi-Banach space.

Part (i) deduces immediately that L{"" C L. Moreover, if 0 < § < p < k < oo, then
for any ¢ > 0 (see [16, Theorem 1.4.2|)

SocLycIycrycS. >

It is difficult to get concrete and good constants for Nikolskii inequality for Lorentz spaces
L. Following some ideas in [13], we have a version of the Nikolskil inequality for Lorentz
spaces.

Theorem 2. (i) If 0 < p; < 2, then for ps > p1,q2 > 0,

Do g o |Q \1/p1—1/p2
< <7) <—> 7 e L,
e < (2) (2 v S € T

(ii) If 0 < p; < o0, then for ps > p1,q2 > 0,
p2 \ Yz p3leo(Q)[\1/p1—1/p2
i < (22 ) (ot
p2—p1 Po — D1
where co(f)) denotes the convex hull of Q and pg is the smallest integer number such that
po > p1/2.
< (i): Suppose that 0 < p; < 2,0 < g1 < oo and f € LP"", then by Theorem 1, f € L2,
so it follows from [13, Theorem 3| that

Il £l oo 1/2
/ yAf(y)dy>

Il £l oo 1/2 9 pi \ 1/2
=|ﬂ|1/2< / (yx}/’“(y))”lyl—wy) <|Q|1/2Hf||£1,/30<—”f!°21) .
0

£ llprars € L™,

1£lloo < 190V2]Ifll2 = 1021/ (

2
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1/p1
2]
< | — .
[ flloo < (2—]?1 1 1lp1,00

Applying now the argument in Step 2 of the proof of Lemma 1, we can obtain a similar

Therefore,

inequality
1 —p1

p2 \Ve, ot
7l < (2) A2 £

Hence,

D2 g o |Q \1/p1—1/p2
<Gitm) G -
e < () ()

(ii): Since 0 < p1/po < 2, we get immediately

1 1 1
p2/p as (lco(sp(f7°)) [\ 21 %2
[l = 1521200 < (22020 Yo (LR o s oy

p2/po:a2/Po = \ps [pg — p1 /po 2—p1/po
< P2 \as (Polco(sp(f))]\ 775 < P2 a5 (P3lco(Q)]\ 7175
S|l— — 1 fllpra < — — 1 £llp1.,1 -
P2 — P1 2 —p1/po P2 — P1 2po — p1

The theorem is proved. >
Lemma 2. Let 1 < p < 00,0 < ¢ < oo. If f € LP9, then f € S’ and for any g € L*

1f*g

pa S C||f||p,qH9H1a

where c is a constant depending only on p,q.

< Firstly, we show that f € S’. Let E C R™ such that 0 < |E| < oo. Then the Holder
inequality implies

|E] |E] |Z]|

[f@)lde < [ frdt= | ((PF ) Pdt < | fllpoo [ t7Pd=c(B) S
e fron] [

0 0

‘p7oo'

This deduces easily that f € 5.
Now, we prove the last conclusion. For an arbitrary ¢t > 0, we define

Z&ww@.

Then for any E C R™ such that t < |E| < oo we have by Jensen’s inequality

Ut =

~ | =

L S\ . *
(EE/U*Q(CEN d:c) < EE/U*Q(:C)W:C <HJ|Q(Z/)|<EE/|f(:c—y)|dx>dygf( )()|g]l1.-

Hence,
1F % gllpg < 15 % gl < NF lpgllglh-
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It now yields from [22, Lemma 3.2] the existence of a constant ¢ such that (in the case
p>1)
1fPpg < ellfllpa,  f € L,

The lemma therefore is proved completely. >

Theorem 3. Let f € LP? (1 < p < 00, 0 < ¢ < o0) such that f # 0. Then sp(f) contains
only points of condensation.

< Let & € sp(f) be an arbitrary point, and let V' be any neighbourhood of £j. Choose
@(€) € C3°(R™) such that ¢(¢) = 1 in V. Then by Lemma 2, F~Y(¢ f) = ¢« f € LP4.
Hence we can assume that sp(f) is bounded, moreover we merely have to show that sp(f) is
uncountable.

It deduces from Theorem 1 that there is a positive integer m such that f € L™(R™). Hence
(f™) € Co(R™). Since f # 0, there exists a non-void ball B such that

B Csp(f™) = supp(f * - % f) (m terms) C sp(f) + -+ +sp(f).

Therefore it follows at once that sp(f) is uncountable. >

It is noticeable that Theorem 3 is a corollary of the following theorem which can be proved
by the same method used in [4, Theorem 1].

Theorem 4. Let f € LP? (1 <p < o00,0< g < o0), f#£0and& € sp(f) be an arbitrary
point. Then the restriction of f on any neighbourhood of £y cannot concentrate on any finite
number of hyperplanes.

It is trivial that A¢(y) < oo for all y > 0, f € LP? if p < co. Then by the argument used

in |7, Theorem 3| and Theorem 1, a property of such functions can be formulated as follows.
Theorem 5. If f € LP71NS" (0 < p < 00,0 < ¢ < 00) such that sp(f) is bounded, then
lim f(z)=0.

|z|—o0

REMARK 1. In contrast with hyperplanes, f may concentrate on surfaces (see [4,
Remark 2|). In addition, Theorems 3-5 are not true when p = oo, i. e., p = ¢ = oo (see
4, 7).

To obtain more properties of functions with bounded spectrum, we prove an auxiliary
result which is interesting in itself.

Theorem 6. If f € LP? (0 < p,q < 00), then
tim [ £(a.2) — F(@)]lpq = 0. ()

where1 = (1,...,1) and a.x = (a121,...,ap2y,) for all a,z € R™.

< It is known in [17] that the set A of all measurable simple functions with bounded
support is dense in LP? if 0 < ¢ < co. Therefore, it suffices to show (4) for each f € A. Hence,
let f € A and assume on the contrary that there exist {a*} C R", a* — 1, and ¢ > 0 such
that

/5= fllpg >e k=1, ()
where fi,(z) = f(a*.x). Since f € LL _(R™), then for each K, = [—¢, {]", one obtains

/!fk(x) — f(x)|de — 0, as k — oo.
K,
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So there is a subsequence of {a*}, which is still denoted by {a*}, such that f;, — f a. e. on
K. Therefore, there exists a subsequence, denoted again by {ak}, such that fr — f a. e. on
R™. Consequently,

lim fi(6) > f5(), ¢>0.

k—o00

Furthermore, it is easy to verify that

||fk||p,q = (alf T aﬁ)_l”f

The Fatou lemma then yields for arbitrary 0 < u < v < 00

|P7Q'

u o0 o0
Jim [P (bt = Tm ( / 1P () dt — / tq/p—lfzq(t)dt>
0 0 u
D : —1 px p —1 px _ —1 px
< G [\ fillg — lim 1P (1) dt < M1 / 1P ()t = / 1Pt prat)dt,
u u 0
and similarly,
o0 oo

km t9/P=1 R () dt < / t4/P=1 (¢ dt.

Hence, if u < v/2 are chosen such that for ¢ = max(29-1,1)

u

/ /Pl ()t < 6, / t4/P=L U (t)dt < 6, (6)
/2

0 v

where § = ped/(3.29/P.q.c), then there is a positive constant N such that for all k > N;

u o0

/tq/plf;“l(t)dt < 94, /tq/plf,fq(t)dt < 4. (7)

0 v/2

Therefore, it follows from (6), (7), and the inequality (f+g)*(t) < f*(t/2) + g*(t/2), that for
all k > Ny

/ 1P (f — F) (1) dt < c< / 1P fr(t/2)dt + / tq/plf*q(t/Q)dt>

0 0 0
u u (8)
< 2q/p1c( / t9/P=1 () dt + / ta/p=1 f*q(t)dt> < 29/P¢s,
0 0
Similarly, one obtains for all £ > Ny
/tq/pl(fk — /)"(t)dt < C</tq“’1f;:q(t/2)dt+/tq/plf*q(t/2)dt>
’ ’ o0 - (9)

:2‘1/p_lc< / t9/P=1 £ () dt +- / ta/p=1 f*q(t)dt> < 20/Pep,

v/2 v/2
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Next, since a* — 1 and suppf is bounded, there is a ball B including suppf such that
suppfr C B, for all K > 1. Thus taking account of fr — f a. e. on R, it deduces that fr — f
in measure. Then the definition of the non-increasing rearrangement of a measurable function
yields for every ¢t > 0 that

(fe — f)*(t) — 0, ask — oc.

Applying the dominated convergence theorem, one arrives at

v

/tQ/p_l(fk — f)*(t)dt — 0, as k — oc.
u
Consequently, there exists a number No > N7 such that for all kK > Ny

v

/tq/pl(fk — FYU)dt < %eq. (10)

u

Combining (8), (9) and (10), it is evident that for all & > N»

_ / (L (f = f) (2t < 20 ch + Penjs L,
0

Pl =11
q

q
p.q

This contradicts (5). >

REMARK 2. It is well-known that LP'? can be considered as Banach spaces if and only if
p=qg=1lorl<p<oo,1<qg< oo Using Theorem 1 and the method of [14], one can obtain
the Bernstein inequality for LP¢ spaces in these cases: If f € L}?, then there is a constant
1 < ¢ < /P such that

||Dapr,q Sc Va”f”p,q (11)

holds for any multi-index «. Moreover this inequality still holds when p = 1. Indeed, it yields
at once from the dominated convergence theorem when p = 1,1 < ¢ < oo that || f|pq — ||fll1,4
as p \, 1, and the claim follows. Therefore we have only to show that this convergence is also
true when ¢ = co and imply directly the desired. Suppose that || f|[p 00 7 [|f|l1,00 as p \, 1.
Then there is € > 0 and {p,}, p, \, 1, such that:

Case 1. || fllpn.00 < I fll1,00 — €, » = 1. Thus there exists 0 < u < || f||oo such that

sup y)\}/p"(y) <ulf(u) —€/2,
0<y<||flloo

and hence, u)\}/p” (u) < uAf(u) —€/2. Let n — oo, we get a contradiction.
Case 2. ||fllpn,0o > || fll1,00 +€ n = 1. Then there is a sequence {y,}, 0 < yp, < ||f]loo
such that

YA (Yn) > yn g (yn) + €/2.

It is easy to see from Theorem 5 and the continuity of f that A is continuous. Therefore let
v be any accumulative point of {y,} and let n — oo in the last inequality, we also have a
contradiction and then the claim is proved.

Furthermore, using the argument in |7, Theorem 6|, one can get a stronger result.
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Theorem 7. Ifv; >0, j=1,...,n and 1 < p,q < oo, then for all f € LY

lim v~ ¢|D*f

la—o0

pq = 0-

REMARK 3. Applying the Bernstein inequality we have v=%||D®f|l,, < v 2| DB f||,, if
a = 3 for such above p, g. Moreover, Theorems 6, 7 fail if p = ¢ = co. But we still don’t know
what happens if p < oo, ¢ = co.

Let us recall some notations about the directional derivatives. Suppose that a =

(a1,...,an) € R™ is an arbitrary real unit vector. Then
n
0
Daf(r) = fule) = Y a5 0 (2)
=1 7

is the derivative of f at the point x in the direction a, and

DI f(z) = Dof{™ ™V = > a*Df(a)

|la|=m

is the derivative of order m of f at x in the direction a (m =1,2,...).

Denote hq(f) = sup |a&|. By an argument similar to the proof of [8, Theorem 2], one can
gesp(f)

obtain the corresponding results for directional derivatives cases in certain Lorentz spaces.
Theorem 8. If 1 < p,q < oo, then there is a constant 1 < ¢ < el/? such that for all
f e PN S satistying he(f) < oo

1Dafllpg < cha( )N fllp.g- (12)
Theorem 9. If f € LP7N S’ (1 < p,q < o) is such that h,(f) < oo, then

lim (ha(f)) " I1DF" fllp.g = 0.

m—-+00

It is clearly that one can let ¢ = 1 in (11) and (12) if || - ||, is a norm, and let ¢ = e'/? in
general case.

Finally, we will show that the Bernstein inequality wholly characterizes the spaces L7 in
the case they are normable.

Theorem 10. Suppose that p=qg=1or1 <p <oo,1 <¢g<ooand f €S’ Then in
order that f € LYY it is necessary and sufficient that there exists a constant ¢ = c(f) such
that

| DYfllpg < cv®, aeZl. (13)

< Only sufficiency hod to be verified. Assume that (13) holds.

Case 1 (1 < p <o0,1 <q<o0)lIfge LPIYR"), then g € L} (R™) by the first part
of the proof of Lemma 2. It hence deduces from (13) that D*f € Lj (R") for all o > 0.
Consequently, we can assume that f € C*°(R"™) by virtue of Sobolev embedding theorem.

Next let w € C§°(R™) such that |w||; = 1, and define for each ¢ > 0

fe(a) = [ * we (),
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where w.(z) = ¢ "w(z/e). Then f.(xr) — f(x) as € | 0, for every z € R". Moreover, by
the argument at the first step of Lemma 1 (recall that » = 1 in this case), one has for each

multi-index «

Su{é) |D% fe ()| < be|| D fellpoo < bel| D fellp,g < Be v, (14)
TE€R™

where B, > 0 is a constant depending only on €. Thus the Taylor series
1
> D f=(0).2°

|a|=0

converges for any point z € C™ and represents f.(x) in R™. Hence taking account of (14), we

obtain
n
|fe(2)] < Bzexp (ZleZjl) zeC,
j=1
i. e., f-(z) is an entire function of exponential type v. It therefore follows from the Paley—
Wiener—Schwartz theorem that

sp(f-) = supp f- C A, (15)
Therefore, Theorem 1 and Lemma 2 yield that for each ¢ > 0

er”p-i—l <a llfe

The Banach-Alaoglu theorem hence implies that there are a sequence {e,} and an ]? €
LPTL(R™) such that f., — f weakly in LP*1(R™) as € | 0. Then by standard arguments, one
has f = f a. e., that is, f., — f weakly in LPT1(R"). Because S c L®*+D/P(R"), the dual
space of LPT1(R™), it follows immediately that f., — f in S’. Consequently, f.. — f in S’
and this deduces at once from (15) that sp(f) C A,.

Case 2 (p = ¢ = 1). This case can be proved by above manner.

Case 3 (p = ¢ = 00). Let p and f5, 0 < § < 1, as in the proof of Theorem 1. Then it
yields from the Leibniz formula, the Bernstein inequality for L and (13) that for all o € Z7}

IDfs(z)| < > Do) [DPf(x)| < D P = (v +6)7,

Y+B=a Y+B=a

poo < C2 [|wel[1l|fllp.c0 = c2 [ fllp,oo-

where § = (0, ...,9). Thus, as in Case 1, f5(z) is an entire function of exponential type v +
for each 0 < § < 1, and therefore, sp(fs) C A, 5. Moreover, it is clear that fs — f in S’ as
0 | 0. This implies obviously that sp(f) C A, g for any 0 < § < 1 and then sp(f) C A,. >

Theorem 11. Ifp=g=1o0r1<p<o00,1<q< oo, then a function f € S’ belongs to
LY if and only if

Tm (v D fllpg) /1 < 1. (16)
|at] — o0

< It is sufficient to prove «only ify part. Given any £ > 0, there is a positive constant

C. > 0 such that for all & > 0

1D fllpg < Cc(1+ 5)|a|’/a-
It hence deduces from Theorem 10 that sp(f) = supp F'f C A(i4ey,. Therefore sp(f) C
ﬂz—:>0 A(lJrs)u =A,. >

REMARK 4. It is noticeable that the root 1/|«| in (16) cannot be replaced by any 1/|a| t(a),
where 0 < t(a), | l|im t(a) = +o0.

o|—00
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