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Dedicated to academician S. M. Nikolskĭı

on the occasion of his 100th-birthday

In this paper we study the Bernstein–Nikolskĭı type inequality, the inverse Bernstein theorem and some
properties of functions and their spectrum in Lorentz spaces Lp,q(Rn).

1. Introduction

The study of properties of functions in the connection with their spectrum has been
implemented by many authors (see, for example, [1–16] and their references). Some
geometrical properties of spectrums of functions and relations with the sequence of norms
of derivatives (in Orlicz spaces and NΦ-spaces) were studied in [1–9]. In this paper we give
some results on the Bernstein–Nikolskĭı type inequality, the inverse Bernstein theorem and
some properties of functions and their spectrum in Lorentz spaces Lp,q(Rn).

Let us recall some notations. If f ∈ S ′ then the spectrum of f is defined to be the support
of its Fourier transform f̂ (see [14, 15]). Denote sp(f) = suppf̂ and |E| the Lebesgue measure
of E. For an arbitrary measurable function f : Rn → C (or R), one defines (see [17–22])

λf (y) :=
∣∣{x ∈ Rn : |f(x)| > y}

∣∣, y > 0,

f∗(t) := inf{y > 0 : λf (y) 6 t}, t > 0,

‖f‖p,q :=





(
q
p

∞∫
0

(
t1/pf∗(t)

)q dt
t

)1/q
, 0 < p <∞, 0 < q <∞,

sup
t>0

t1/pf∗(t), 0 < p 6∞, q =∞.

Then the Lorentz spaces Lp,q (on Rn) are by definition the collection of all measurable
functions f such that ‖f‖p,q < ∞. The case p = ∞, 0 < q < ∞ is not considered since
∞∫
0

(
f∗(t)

)q dt
t

< ∞ implies f = 0 a. e. (see [17]). Furthermore, there is an alternative

representation of ‖ · ‖p,q (see, for example, [17, 20])

‖f‖p,q =





(
q
∞∫
0

yq−1λ
q/p
f (y)dy

)1/q
, 0 < p <∞, 0 < q <∞,

sup
y>0

yλ
1/p
f (y), 0 < p 6∞, q =∞.
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In this paper, for p, q fixed, we always let r such that 0 < r 6 1, r 6 q, and r < p. There
are two useful analogues of f ∗ used in some below proofs: Let (see [17])

f∗∗(t) = f∗∗(t, r) := sup
|E|>t

(
1

|E|

∫

E

|f(x)|rdx
)1/r

, t > 0.

Then, (f∗∗)∗ = f∗∗, and

(f∗)∗∗(t) =

(
1

t

t∫

0

(f∗(y))rdy

)1/r

=: f∗∗∗(t), t > 0.

It is known that f ∗, f∗∗ and f∗∗∗ are non-negative, non-increasing, and

f∗ 6 f∗∗ 6 f∗∗∗.

If f∗ is replaced by f∗∗ or f∗∗∗ in the expression of ‖f‖p,q then one gets by definition ‖f‖∗∗p,q
or ‖f‖∗∗∗p,q respectively. It is well-known that ‖ · ‖∗∗p,q is a norm when 1 < p 6 ∞, 1 6 q 6 ∞
(set r = 1 in this case), and moreover, Lp,q can be considered as Banach spaces if and only if
p = q = 1 or 1 < p 6 ∞, 1 6 q 6 ∞ (see [17]). In particular there is at that an useful relation
among ‖ · ‖p,q, ‖ · ‖∗∗p,q and ‖ · ‖∗∗∗p,q (see [17])

‖f‖p,q 6 ‖f‖∗∗p,q 6 ‖f‖∗∗∗p,q 6
(
p/(p− r))1/r‖f‖p,q.

Henceforth, Ω is a compact subset of Rn, and

∆ν =
{
ξ ∈ Rn : |ξj | 6 νj , j = 1, . . . , n

}
,

where ν = (ν1, . . . , νn), νj > 0, j = 1, . . . , n. Denote by

Lp,qΩ =
{
f ∈ Lp,q ∩ S′ : sp(f) ⊂ Ω

}
.

When Ω = ∆ν , L
p,q
Ω is denoted again by Lp,qν . Similarly one has SΩ or Sν respectively.

2. Results

First we give some results on the Bernstein—Nikolskĭı type inequality for Lorentz spaces.

Lemma 1. Let 0 < p1 < p2 6 ∞, 0 < q1, q2 6 ∞. Then for each multi-index α, there

exists a positive constant c such that for all ϕ ∈ SΩ
‖Dαϕ‖p2,q2 6 c‖ϕ‖p1,q1 . (1)

C Step 1 ( p2 = q2 = ∞ and α = (0, . . . , 0)). Let ψ ∈ S such that ψ̂(x) = 1 in some
neighbourhood of Ω. Then for any x ∈ Rn

|ϕ(x)| = |ϕ ∗ ψ(x)| 6
∫

Rn

|ϕ(x− y)ψ(y)|dy 6

∞∫

0

ϕ(x− ·)∗(t)ψ∗(t)dt

=

∞∫

0

ϕ∗(t)ψ∗(t)dt 6 ‖ϕ‖1−r∞

∞∫

0

(
t1/p1ϕ∗(t)

)r
t−r/p1ψ∗(t)dt

6 ‖ϕ‖1−r∞ ‖ϕ‖rp1,∞
∞∫

0

t−r/p1ψ∗(t)dt =
p1

p1 − r
‖ψ‖p1/(p1−r),1‖ϕ‖1−r∞ ‖ϕ‖rp1,∞.



2–92 H. H. Bang, N. M. Cong

This deduces at once

‖ϕ‖∞ 6

( p1
p1 − r

‖ψ‖p1/(p1−r),1
)1/r

‖ϕ‖p1,∞.

Step 2 (α = (0, . . . , 0)). We only have to show that there is a constant c such that

‖ϕ‖p2,q2 6 c‖ϕ‖p1,∞, ϕ ∈ SΩ, (2)

where 0 < p1 < p2 <∞, 0 < q2 <∞.
Indeed, using the alternative representation of ‖ · ‖p,q , we have

‖ϕ‖q2p2,q2 = q2

∞∫

0

yq2−1λq2/p2ϕ (y)dy = q2

‖ϕ‖∞∫

0

yq2−1λq2/p2ϕ (y)dy

= q2

‖ϕ‖∞∫

0

(
yλ1/p1ϕ (y)

) q2
p2
p1
y
q2−1−

q2
p2
p1dy 6 q2‖ϕ‖q2p1/p2p1,∞

‖ϕ‖∞∫

0

y
q2(p2−p1)

p2
−1
dy

=
p2

p2 − p1
‖ϕ‖q2p1/p2p1,∞ ‖ϕ‖q2(p2−p1)/p2∞ 6 C

p2
p2 − p1

‖ϕ‖q2p1,∞,

where the last inequality follows from Step 1. Therefore (2) is obtained.
Step 3. We prove (1) when p1 = p2 = p, q1 = q2 = q. If ϕ ∈ SΩ then Dαϕ ∈ SΩ for every

multi-index α. Denote by Mϕ the Hardy—Littlewood maximal function of ϕ, then (see [14,
p. 16]) for all x ∈ Rn

|Dαϕ(x)| 6 c1
(
(M|ϕ|r)(x)

)1/r
,

where c1 is a constant depending only on Ω. Moreover it is known that for every measurable
function f (see, for example, [18, 19])

(Mf)∗(t) ∼ 1

t

t∫

0

f∗(s)ds.

Hence,

(Dαϕ)∗ 6 c1
(
(M|ϕ|r)1/r

)∗
= c1

(
(M|ϕ|r)∗

)1/r
6 c2ϕ

∗∗∗,

and consequently,
‖Dαϕ‖p,q 6 c2‖ϕ‖∗∗∗p,q 6 c3‖ϕ‖p,q. (3)

Step 4. The general case follows immediately from (2), (3) and the property
‖ · ‖p,∞ 6 ‖ · ‖p,q. The proof so has been fulfilled. B

The theorem below is an extension of the Theorems 1.4.1(i) and 1.4.2 in [16].

Theorem 1. Let 0 < p1 < p2 6∞, 0 < q1, q2 6∞.

(i) If α is a multi-index, then there exists a constant c such that for all f ∈ Lp1,q1
Ω

‖Dαf‖p2,q2 6 c‖f‖p1,q1 .

(ii) Lp,qΩ is a quasi-Banach space for arbitrary 0 < p, q 6 ∞, and the following topological

embeddings hold

SΩ ⊂ Lp1,q1Ω ⊂ Lp2,q2Ω ⊂ S′.
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C (i): Without loss of generality, one can assume that q1 =∞ and 0 < p1, p2, q2 <∞ (note
that the case p1 =∞ and so, p1 = p2 = q1 = q2 =∞, was proved in [16, Theorem 1.4.1]). Let
p1 < p <∞, and let ϕ ∈ S such that ϕ(0) = 1 and sp(ϕ) ⊂ {x : |x| 6 1}. For each f ∈ Lp1,∞Ω

and 0 < δ < 1, put fδ(x) = ϕ(δx)f(x). Then fδ → f on Rn and fδ ∈ SΩ1 , where

Ω1 =
{
y ∈ Rn : ∃x ∈ Ω such that |x− y| 6 1

}
.

Consequently, it follows from Lemma 1 that

‖f‖p 6 lim
δ↘0
‖fδ‖p 6 c1 lim

δ↘0
‖fδ‖p1,∞ 6 c1‖ϕ‖∞‖f‖p1,∞,

where c1 is independent of δ and f . Hence f ∈ LpΩ. Now the argument in [16, Theorem 1.4.1]
implies that Dαfδ −→ Dαf in L∞ (and this show that the conclusion is true if p2 = q2 =∞).
Lemma 1 therefore deduces again that

‖Dαf‖p2,q2 6 lim
δ↘0
‖Dαfδ‖p2,q2 6 c lim

δ↘0
‖fδ‖p1,∞ 6 c‖ϕ‖∞‖f‖p1,∞ 6 c ‖ϕ‖∞‖f‖p1,q1 ,

where c depends only on p1, p2, q2 and Ω.
(ii): First, we show that Lp,qΩ is a quasi-Banach space for any 0 < p, q 6 ∞. Let

{
fj
}

be
any fundamental sequence in Lp,qΩ . Then there is a function f ∈ Lp,q such that fj → f in Lp,q

as j →∞.
Moreover, part (i) above with α = (0, . . . , 0) and p2 = q2 = ∞ shows that {fj} is also

a fundamental sequence in L∞. Then it implies by standard arguments that fj → f in L∞,
and consequently, fj → f in S′. Hence f̂j → f̂ in S′ and this yields that sp(f) ⊂ Ω. Therefore
f ∈ Lp,qΩ and fj → f in Lp,q, and it follows that Lp,qΩ is a quasi-Banach space.

Part (i) deduces immediately that Lp1,q1Ω ⊂ Lp2,q2Ω . Moreover, if 0 < θ < p < κ 6 ∞, then
for any q > 0 (see [16, Theorem 1.4.2])

SΩ ⊂ LθΩ ⊂ Lp,qΩ ⊂ LκΩ ⊂ S′. B

It is difficult to get concrete and good constants for Nikolskĭı inequality for Lorentz spaces
Lp,qΩ . Following some ideas in [13], we have a version of the Nikolskĭı inequality for Lorentz
spaces.

Theorem 2. (i) If 0 < p1 < 2, then for p2 > p1, q2 > 0,

‖f‖p2,q2 6

( p2
p2 − p1

)1/q2( |Ω|
2− p1

)1/p1−1/p2
‖f‖p1,q1 , f ∈ Lp1,q1Ω ;

(ii) If 0 < p1 <∞, then for p2 > p1, q2 > 0,

‖f‖p2,q2 6

( p2
p2 − p1

)1/q2(p20|co(Ω)|
2p0 − p1

)1/p1−1/p2
‖f‖p1,q1 , f ∈ Lp1,q1Ω ,

where co(Ω) denotes the convex hull of Ω and p0 is the smallest integer number such that

p0 > p1/2.

C (i): Suppose that 0 < p1 < 2, 0 < q1 6 ∞ and f ∈ Lp1,q1Ω , then by Theorem 1, f ∈ L2,
so it follows from [13, Theorem 3] that

‖f‖∞ 6 |Ω|1/2‖f‖2 = |Ω|1/2
( ‖f‖∞∫

0

yλf (y)dy

)1/2

= |Ω|1/2
( ‖f‖∞∫

0

(
yλ

1/p1
f (y)

)p1y1−p1dy
)1/2

6 |Ω|1/2‖f‖p1/2p1,∞

(
‖f‖2−p1∞

2− p1

)1/2

.
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Therefore,

‖f‖∞ 6

(
|Ω|

2− p1

)1/p1

‖f‖p1,∞.

Applying now the argument in Step 2 of the proof of Lemma 1, we can obtain a similar
inequality

‖f‖p2,q2 6

( p2
p2 − p1

)1/q2
‖f‖

p1
p2
p1,∞‖f‖

1−p1
p2
∞ .

Hence,

‖f‖p2,q2 6

( p2
p2 − p1

)1/q2( |Ω|
2− p1

)1/p1−1/p2
‖f‖p1,q1 .

(ii): Since 0 < p1/p0 < 2, we get immediately

‖f‖p2,q2 = ‖fp0‖
1/p0
p2/p0,q2/p0

6

( p2/p0
p2/p0 − p1/p0

) 1
q2

( |co(sp(fp0))|
2− p1/p0

) 1
p1
− 1
p2 ‖fp0‖p1/p0,q1/p0

6

( p2
p2 − p1

) 1
q2

(p0|co(sp(f))|
2− p1/p0

) 1
p1
− 1
p2 ‖f‖p1,q1 6

( p2
p2 − p1

) 1
q2

(p20|co(Ω)|
2p0 − p1

) 1
p1
− 1
p2 ‖f‖p1,q1 .

The theorem is proved. B

Lemma 2. Let 1 < p 6 ∞, 0 < q 6 ∞. If f ∈ Lp,q, then f ∈ S′ and for any g ∈ L1

‖f ∗ g‖p,q 6 c‖f‖p,q‖g‖1,

where c is a constant depending only on p, q.

C Firstly, we show that f ∈ S ′. Let E ⊂ Rn such that 0 < |E| < ∞. Then the Hölder
inequality implies

∫

E

|f(x)|dx 6

|E|∫

0

f∗(t)dt =

|E|∫

0

(
t1/pf∗(t)

)
t−1/pdt 6 ‖f‖p,∞

|E|∫

0

t−1/pdt = c(E)‖f‖p,∞.

This deduces easily that f ∈ S ′.
Now, we prove the last conclusion. For an arbitrary t > 0, we define

f (∗)(t) =
1

t

t∫

0

f∗(y)dy.

Then for any E ⊂ Rn such that t 6 |E| <∞ we have by Jensen’s inequality

(
1

|E|

∫

E

|f∗g(x)|rdx
) 1

r

6
1

|E|

∫

E

|f∗g(x)|dx 6

∫

Rn

|g(y)|
(

1

|E|

∫

E

|f(x−y)|dx
)
dy 6 f (∗)(t)‖g‖1.

Hence,
‖f ∗ g‖p,q 6 ‖f ∗ g‖∗∗p,q 6 ‖f (∗)‖p,q‖g‖1.
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It now yields from [22, Lemma 3.2] the existence of a constant c such that (in the case
p > 1)

‖f (∗)‖p,q 6 c‖f‖p,q, f ∈ Lp,q,
The lemma therefore is proved completely. B

Theorem 3. Let f ∈ Lp,q (1 < p <∞, 0 < q 6∞) such that f 6≡ 0. Then sp(f) contains

only points of condensation.

C Let ξ0 ∈ sp(f) be an arbitrary point, and let V be any neighbourhood of ξ0. Choose
ϕ̂(ξ) ∈ C∞0 (Rn) such that ϕ̂(ξ) = 1 in V . Then by Lemma 2, F−1(ϕ̂ f̂) = ϕ ∗ f ∈ Lp,q.
Hence we can assume that sp(f) is bounded, moreover we merely have to show that sp(f) is
uncountable.

It deduces from Theorem 1 that there is a positive integer m such that f ∈ Lm(Rn). Hence
(fm)̂ ∈ C0(R

n). Since f 6≡ 0, there exists a non-void ball B such that

B ⊂ sp(fm) = supp(f̂ ∗ · · · ∗ f̂) (m terms) ⊂ sp(f) + · · ·+ sp(f).

Therefore it follows at once that sp(f) is uncountable. B

It is noticeable that Theorem 3 is a corollary of the following theorem which can be proved
by the same method used in [4, Theorem 1].

Theorem 4. Let f ∈ Lp,q (1 < p <∞, 0 < q 6∞), f 6≡ 0 and ξ0 ∈ sp(f) be an arbitrary

point. Then the restriction of f̂ on any neighbourhood of ξ0 cannot concentrate on any finite

number of hyperplanes.

It is trivial that λf (y) <∞ for all y > 0, f ∈ Lp,q if p <∞. Then by the argument used
in [7, Theorem 3] and Theorem 1, a property of such functions can be formulated as follows.

Theorem 5. If f ∈ Lp,q ∩ S′ (0 < p <∞, 0 < q 6 ∞) such that sp(f) is bounded, then

lim
|x|→∞

f(x) = 0.

Remark 1. In contrast with hyperplanes, f̂ may concentrate on surfaces (see [4,
Remark 2]). In addition, Theorems 3–5 are not true when p = ∞, i. e., p = q = ∞ (see
[4, 7]).

To obtain more properties of functions with bounded spectrum, we prove an auxiliary
result which is interesting in itself.

Theorem 6. If f ∈ Lp,q (0 < p, q <∞), then

lim
a→111

‖f(a.x)− f(x)‖p,q = 0, (4)

where 111 = (1, . . . , 1) and a.x = (a1x1, . . . , anxn) for all a, x ∈ Rn.

C It is known in [17] that the set A of all measurable simple functions with bounded
support is dense in Lp,q if 0 < q <∞. Therefore, it suffices to show (4) for each f ∈ A. Hence,
let f ∈ A and assume on the contrary that there exist {ak} ⊂ Rn, ak → 111, and ε > 0 such
that

‖fk − f‖p,q > ε, k > 1, (5)

where fk(x) = f(ak.x). Since f ∈ L1
loc(R

n), then for each K` = [−`, `]n, one obtains
∫

K`

|fk(x)− f(x)|dx→ 0, as k →∞.
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So there is a subsequence of {ak}, which is still denoted by {ak}, such that fk → f a. e. on
K`. Therefore, there exists a subsequence, denoted again by {ak}, such that fk → f a. e. on
Rn. Consequently,

lim
k→∞

f∗k (t) > f∗(t), t > 0.

Furthermore, it is easy to verify that

‖fk‖p,q = (ak1 · · · akn)−1‖f‖p,q.

The Fatou lemma then yields for arbitrary 0 < u < v <∞

lim
k→∞

u∫

0

tq/p−1f∗qk (t)dt = lim
k→∞

( ∞∫

0

tq/p−1f∗qk (t)dt−
∞∫

u

tq/p−1f∗qk (t)dt

)

6
p

q
lim
k→∞

‖fk‖qp,q − lim
k→∞

∞∫

u

tq/p−1f∗pk (t)dt 6
p

q
‖f‖qp,q −

∞∫

u

tq/p−1f∗q(t)dt =

u∫

0

tq/p−1f∗q(t)dt,

and similarly,

lim
k→∞

∞∫

v

tq/p−1f∗qk (t)dt 6

∞∫

v

tq/p−1f∗q(t)dt.

Hence, if u < v/2 are chosen such that for c = max(2q−1, 1)

u∫

0

tq/p−1f∗q(t)dt < δ,

∞∫

v/2

tq/p−1f∗q(t)dt < δ, (6)

where δ = pεq/(3.2q/p.q.c), then there is a positive constant N1 such that for all k > N1

u∫

0

tq/p−1f∗qk (t)dt < δ,

∞∫

v/2

tq/p−1f∗qk (t)dt < δ. (7)

Therefore, it follows from (6), (7), and the inequality (f + g)∗(t) 6 f∗(t/2)+ g∗(t/2), that for
all k > N1

u∫

0

tq/p−1
(
fk − f

)∗q
(t)dt 6 c

( u∫

0

tq/p−1f∗qk (t/2)dt+

u∫

0

tq/p−1f∗q(t/2)dt

)

6 2q/p−1c

( u∫

0

tq/p−1f∗qk (t)dt+

u∫

0

tq/p−1f∗q(t)dt

)
< 2q/pcδ.

(8)

Similarly, one obtains for all k > N1

∞∫

v

tq/p−1
(
fk − f)∗q(t)dt 6 c

( ∞∫

v

tq/p−1f∗qk (t/2)dt+

∞∫

v

tq/p−1f∗q(t/2)dt

)

= 2q/p−1c

( ∞∫

v/2

tq/p−1f∗qk (t)dt+

∞∫

v/2

tq/p−1f∗q(t)dt

)
< 2q/pcδ.

(9)
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Next, since ak → 111 and suppf is bounded, there is a ball B including suppf such that
suppfk ⊂ B, for all k > 1. Thus taking account of fk → f a. e. on Rn, it deduces that fk → f
in measure. Then the definition of the non-increasing rearrangement of a measurable function
yields for every t > 0 that

(fk − f)∗(t) −→ 0, as k →∞.

Applying the dominated convergence theorem, one arrives at

v∫

u

tq/p−1(fk − f)∗q(t)dt→ 0, as k →∞.

Consequently, there exists a number N2 > N1 such that for all k > N2

v∫

u

tq/p−1(fk − f)∗q(t)dt <
p

3q
εq. (10)

Combining (8), (9) and (10), it is evident that for all k > N2

p

q
‖fk − f‖qp,q =

∞∫

0

tq/p−1(fk − f)∗q(t)dt < 2q/p+1cδ +
p

q
εq/3 =

p

q
εq.

This contradicts (5). B

Remark 2. It is well-known that Lp,q can be considered as Banach spaces if and only if
p = q = 1 or 1 < p 6 ∞, 1 6 q 6 ∞. Using Theorem 1 and the method of [14], one can obtain
the Bernstein inequality for Lp,q spaces in these cases: If f ∈ Lp,qν , then there is a constant
1 6 c 6 e1/p such that

‖Dαf‖p,q 6 c να‖f‖p,q (11)

holds for any multi-index α. Moreover this inequality still holds when p = 1. Indeed, it yields
at once from the dominated convergence theorem when p = 1, 1 6 q <∞ that ‖f‖p,q → ‖f‖1,q
as p↘ 1, and the claim follows. Therefore we have only to show that this convergence is also
true when q = ∞ and imply directly the desired. Suppose that ‖f‖p,∞ 6→ ‖f‖1,∞ as p ↘ 1.
Then there is ε > 0 and {pn}, pn ↘ 1, such that:

Case 1. ‖f‖pn,∞ < ‖f‖1,∞ − ε, n > 1. Thus there exists 0 < u < ‖f‖∞ such that

sup
0<y<‖f‖∞

yλ
1/pn
f (y) < uλf (u)− ε/2,

and hence, uλ1/pnf (u) < uλf (u)− ε/2. Let n→∞, we get a contradiction.
Case 2. ‖f‖pn,∞ > ‖f‖1,∞ + ε, n > 1. Then there is a sequence {yn}, 0 < yn < ‖f‖∞

such that
ynλ

1/pn
f (yn) > ynλf (yn) + ε/2.

It is easy to see from Theorem 5 and the continuity of f that λf is continuous. Therefore let
v be any accumulative point of {yn} and let n → ∞ in the last inequality, we also have a
contradiction and then the claim is proved.

Furthermore, using the argument in [7, Theorem 6], one can get a stronger result.



2–98 H. H. Bang, N. M. Cong

Theorem 7. If νj > 0, j = 1, . . . , n and 1 6 p, q <∞, then for all f ∈ Lp,qν

lim
|α|→∞

ν−α‖Dαf‖p,q = 0.

Remark 3. Applying the Bernstein inequality we have ν−α‖Dαf‖p,q 6 ν−β‖Dβf‖p,q if
α > β for such above p, q. Moreover, Theorems 6, 7 fail if p = q =∞. But we still don’t know
what happens if p <∞, q =∞.

Let us recall some notations about the directional derivatives. Suppose that a =
(a1, . . . , an) ∈ Rn is an arbitrary real unit vector. Then

Daf(x) = f ′a(x) :=
n∑

j=1

aj
∂f

∂xj
(x)

is the derivative of f at the point x in the direction a, and

Dm
a f(x) = Daf

(m−1)
a =

∑

|α|=m

aαDαf(x)

is the derivative of order m of f at x in the direction a (m = 1, 2, . . . ).
Denote ha(f) = sup

ξ∈sp(f)
|aξ|. By an argument similar to the proof of [8, Theorem 2], one can

obtain the corresponding results for directional derivatives cases in certain Lorentz spaces.

Theorem 8. If 1 6 p, q 6 ∞, then there is a constant 1 6 c 6 e1/p such that for all

f ∈ Lp,q ∩ S′ satisfying ha(f) <∞

‖Daf‖p,q 6 c ha(f)‖f‖p,q. (12)

Theorem 9. If f ∈ Lp,q ∩ S′ (1 6 p, q <∞) is such that ha(f) <∞, then

lim
m→+∞

(
ha(f)

)−m‖Dm
a f‖p,q = 0.

It is clearly that one can let c = 1 in (11) and (12) if ‖ · ‖p,q is a norm, and let c = e1/p in
general case.

Finally, we will show that the Bernstein inequality wholly characterizes the spaces Lp,q
ν in

the case they are normable.

Theorem 10. Suppose that p = q = 1 or 1 < p 6 ∞, 1 6 q 6 ∞ and f ∈ S ′. Then in

order that f ∈ Lp,qν it is necessary and sufficient that there exists a constant c = c(f) such

that

‖Dαf‖p,q 6 c να, α ∈ Zn
+. (13)

C Only sufficiency hod to be verified. Assume that (13) holds.
Case 1 (1 < p < ∞, 1 6 q 6 ∞). If g ∈ Lp,q(Rn), then g ∈ L1

loc(R
n) by the first part

of the proof of Lemma 2. It hence deduces from (13) that Dαf ∈ L1
loc(R

n) for all α > 0.
Consequently, we can assume that f ∈ C∞(Rn) by virtue of Sobolev embedding theorem.

Next let ω ∈ C∞0 (Rn) such that ‖ω‖1 = 1, and define for each ε > 0

fε(x) = f ∗ ωε(x),
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where ωε(x) = ε−nω(x/ε). Then fε(x) → f(x) as ε ↓ 0, for every x ∈ Rn. Moreover, by
the argument at the first step of Lemma 1 (recall that r = 1 in this case), one has for each
multi-index α

sup
x∈Rn

|Dαfε(x)| 6 bε‖Dαfε‖p,∞ 6 bε‖Dαfε‖p,q 6 Bε ν
α, (14)

where Bε > 0 is a constant depending only on ε. Thus the Taylor series
∞∑

|α|=0

1

α!
Dαfε(0).z

α

converges for any point z ∈ Cn and represents fε(x) in Rn. Hence taking account of (14), we
obtain

|fε(z)| 6 Bε exp

(
n∑

j=1

νj |zj |
)
, z ∈ Cn,

i. e., fε(z) is an entire function of exponential type ν. It therefore follows from the Paley–
Wiener–Schwartz theorem that

sp(fε) = supp f̂ε ⊂ ∆ν . (15)

Therefore, Theorem 1 and Lemma 2 yield that for each ε > 0

‖fε‖p+1 6 c1 ‖fε‖p,∞ 6 c2 ‖ωε‖1‖f‖p,∞ = c2 ‖f‖p,∞.

The Banach–Alaoglu theorem hence implies that there are a sequence {εn} and an f̃ ∈
Lp+1(Rn) such that fεn → f̃ weakly in Lp+1(Rn) as ε ↓ 0. Then by standard arguments, one
has f = f̃ a. e., that is, fεn → f weakly in Lp+1(Rn). Because S ⊂ L(p+1)/p(Rn), the dual
space of Lp+1(Rn), it follows immediately that fεn → f in S′. Consequently, f̂εn → f̂ in S′

and this deduces at once from (15) that sp(f) ⊂ ∆ν .
Case 2 (p = q = 1). This case can be proved by above manner.
Case 3 (p = q = ∞). Let ϕ and fδ, 0 < δ < 1, as in the proof of Theorem 1. Then it

yields from the Leibniz formula, the Bernstein inequality for L∞ and (13) that for all α ∈ Zn
+

|Dαfδ(x)| 6
∑

γ+β=α

∣∣Dγ(ϕ(δx))
∣∣ ∣∣Dβf(x)

∣∣ 6 c
∑

γ+β=α

δ|γ|νβ = c(ν + δδδ)α,

where δδδ = (δ, ..., δ). Thus, as in Case 1, fδ(z) is an entire function of exponential type ν + δδδ
for each 0 < δ < 1, and therefore, sp(fδ) ⊂ ∆ν+δδδ. Moreover, it is clear that fδ → f in S′ as
δ ↓ 0. This implies obviously that sp(f) ⊂ ∆ν+θθθ for any 0 < θ < 1 and then sp(f) ⊂ ∆ν . B

Theorem 11. If p = q = 1 or 1 < p 6 ∞, 1 6 q 6 ∞, then a function f ∈ S ′ belongs to

Lp,qν if and only if

lim
|α|→∞

(
ν−α‖Dαf‖p,q

)1/|α|
6 1. (16)

C It is sufficient to prove «only if» part. Given any ε > 0, there is a positive constant
Cε > 0 such that for all α > 0

‖Dαf‖p,q 6 Cε(1 + ε)|α|να.

It hence deduces from Theorem 10 that sp(f) = suppFf ⊂ ∆(1+ε)ν . Therefore sp(f) ⊂⋂
ε>0∆(1+ε)ν = ∆ν . B

Remark 4. It is noticeable that the root 1/|α| in (16) cannot be replaced by any 1/|α| t(α),
where 0 < t(α), lim

|α|→∞
t(α) = +∞.
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