On permutation tableaux of type A and B

Jang Soo Kim
(Joint work with Sylvie Corteel)

University of Paris 7

64th SLC, Lyon, March 30, 2010
First introduced by Postnikov in his study of totally nonnegative Grassmanian.
Permutation tableaux

- First introduced by Postnikov in his study of totally nonnegative Grassmannian.
- There are many bijections between permutation tableaux and permutations.
Permutation tableaux

- First introduced by Postnikov in his study of totally nonnegative Grassmanian.
- There are many bijections between permutation tableaux and permutations.
- A connection with partially asymmetric exclusion process (PASEP)
Permutation tableaux

- First introduced by Postnikov in his study of totally nonnegative Grassmanian.
- There are many bijections between permutation tableaux and permutations.
- A connection with partially asymmetric exclusion process (PASEP)
- Type B Permutation tableaux defined by Lam and Williams
Ferrers diagram
Ferrers diagram
Permutation tableau

- Each column has at least one 1.
Permutation tableau

- Each column has at least one 1.
- There is no configuration like

\[
1 \quad \vdots \\
1 \quad \cdots
\]
Permutation tableau

- Each column has at least one 1.
- There is no configuration like

```
1
.
.
1  ...  0
```
Permutation tableau

- Each column has at least one 1.
- There is no configuration like

\[
\begin{array}{cccc}
1 & \cdots & 0 \\
\vdots \\
1 & \cdots & 0 \\
\end{array}
\]
Permutation tableau

- Each column has at least one 1.
- There is no configuration like

\[\begin{array}{ccccccc}
1 & \cdots & 0 \\
\vdots \\
1 & \cdots & 0 \\
\end{array} \]

\[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 \\
1 \\
0 \\
\end{array} \]

\[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 \\
1 \\
0 \\
\end{array} \]

NO

NO

NO
Permutation tableau

- Each column has at least one 1.
- There is **no** configuration like

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

NO NO YES!
Permutation tableau

- Each column has at least one 1.
- There is no configuration like

\[
\begin{array}{ccc}
1 & & \\
\vdots & & \\
1 & \cdots & 0
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & \\
0 & 0 & 1 & & & \\
1 & & & & & \\
0 & & & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & \\
0 & 1 & 0 & 0 & 1 & \\
1 & & & & & \\
0 & & & & & \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & \\
0 & 1 & 1 & & & \\
1 & & & & & \\
0 & & & & & \\
\end{array}
\]

- A restricted 0 is

\[
\begin{array}{ccc}
1 & & \\
\vdots & & \\
0 & & \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & & & 1 \\
0 & & & 0 \\
1 & & & 0 \\
1 & & & 0 \\
0 & & & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & & & 1 \\
0 & & & 0 \\
1 & & & 0 \\
1 & & & 0 \\
0 & & & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & & & 1 \\
0 & & & 0 \\
1 & & & 0 \\
1 & & & 0 \\
0 & & & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & & & 1 \\
0 & & & 0 \\
1 & & & 0 \\
1 & & & 0 \\
0 & & & 0 \\
\end{array}
\]

YES!
Permutation tableau

- Each column has at least one 1.
- There is no configuration like

\[
\begin{array}{cccc}
1 & \cdots & 0 \\
1 & \cdots & 0 \\
\vdots & & \vdots \\
0 & & 0 \\
\end{array}
\]

- A restricted 0 is

\[
\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

- An unrestricted row has no restricted 0.

\[
\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

YES!
The alternative representation

- Topmost 1 is ↑
The alternative representation

- Topmost 1 is \(\uparrow \)
- Rightmost restricted 0 is \(\leftarrow \)
The alternative representation

- Topmost 1 is ↑
- Rightmost restricted 0 is ←

In the alternative representation,
The alternative representation

- Topmost 1 is ↑
- Rightmost restricted 0 is ←

In the alternative representation,
- Each column has exactly one ↑
The alternative representation

- Topmost 1 is \(\uparrow \)
- Rightmost restricted 0 is \(\downarrow \)

- In the alternative representation,
 - Each column has exactly one \(\uparrow \)
 - No arrow points to another.
The alternative representation

- Topmost 1 is ↑
- Rightmost restricted 0 is ⇐

In the alternative representation,
- Each column has exactly one ↑
- No arrow points to another.
- Unrestricted row ⇔ row without ⇐
The alternative representation

- Topmost 1 is ↑
- Rightmost restricted 0 is ↔

In the alternative representation,
- Each column has exactly one ↑
- No arrow points to another.
- Unrestricted row ⇔ row without ↔
- First introduced by Viennot (alternative tableau) and studied more by Nadeau
The bijection Φ of Corteel and Nadeau

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>9</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td>↑</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>←</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>←</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>←</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>↑</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$1, 10, 11, 13$
The bijection Φ of Corteel and Nadeau

1, 12, 10, 11, 13
The bijection Φ of Corteel and Nadeau

$9, 1, 12, 10, 11, 13$
The bijection Φ of Corteel and Nadeau

9, 2, 7, 8, 1, 12, 10, 11, 13
The bijection Φ of Corteel and Nadeau

9, 4, 6, 2, 7, 8, 1, 12, 10, 11, 13
The bijection Φ of Corteel and Nadeau

9, 4, 6, 5, 2, 7, 8, 1, 12, 10, 11, 13
The bijection Φ of Corteel and Nadeau

$9, 4, 6, 5, 2, 7, 8, 3, 1, 12, 10, 11, 13$
Decompose π as $\sigma 1 \tau$.

\[
\pi = 4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13
\]
Decompose π as $\sigma \tau$.

$\pi = 4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13$

The **RL-minima** (right-to-left mimina) of π:

$4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13$
Decompose π as $\sigma 1\tau$.

$$\pi = 4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13$$

The **RL-minima** (right-to-left mimina) of π:

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

The **RL-maxima** (right-to-left maxima) of σ:

$$\sigma$$

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13
Decompose π as $\sigma_1\tau$.

The \textbf{RL-minima} (right-to-left mimina) of π:

$4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13$

The \textbf{RL-maxima} (right-to-left maxima) of σ:

$4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13$

Proposition (Corteel & Nadeau, Nadeau)

Let $\pi = \sigma_1\tau$ and $\Phi(\pi) = T$. Then
Decompose π as $\sigma_1\tau$.

\[\pi = 4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13 \]

The **RL-minima** (right-to-left mimina) of π:

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

The **RL-maxima** (right-to-left maxima) of σ:

4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13

Proposition (Corteel & Nadeau, Nadeau)

Let $\pi = \sigma_1\tau$ and $\Phi(\pi) = T$. Then

- the unrestricted rows of $T \iff$ the RL-minima of π
Decompose π as $\sigma \tau$.

$$\pi = 4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13$$

The **RL-minima** (right-to-left mimina) of π:

$4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13$

The **RL-maxima** (right-to-left maxima) of σ:

$$\sigma = 4, 6, 5, 2, 8, 3, 1, 9, 7, 12, 10, 11, 13$$

Proposition (Corteel & Nadeau, Nadeau)

Let $\pi = \sigma \tau$ and $\Phi(\pi) = T$. Then

- the unrestricted rows of T \Leftrightarrow the RL-minima of π
- the columns with 1 in the first row of T \Leftrightarrow the RL-maxima of σ
Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

\[\sum_{T \in \mathcal{PT}(n)} x^{\text{urr}(T)-1} y^{\text{topone}(T)} = (x + y)_{n-1} = (x + y)(x + y + 1) \cdots (x + y + n - 2). \]
Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

$$\sum_{T \in \mathcal{PT}(n)} x^{\text{urr}(T) - 1} y^{\text{topone}(T)} = (x + y)_{n-1} = (x + y)(x + y + 1) \cdots (x + y + n - 2).$$

- $c(n, k)$: the number $\pi \in S_n$ with k cycles

$$c(n, k) = \sum_{i, j} c(n - 1, i + j) \binom{i + j}{i} x^i y^j$$

$$\# \{ T \in \mathcal{PT}(n) : \text{urr}(T) - 1 = i, \ \text{topone}(T) = j \} = c(n - 1, i + j) \binom{i + j}{i}$$
Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

\[\sum_{T \in \mathcal{PT}(n)} x^{\text{urr}(T) - 1} y^{\text{topone}(T)} = (x + y)^{n-1} = (x + y)(x + y + 1) \cdots (x + y + n - 2). \]

- \(c(n, k) \): the number \(\pi \in S_n \) with \(k \) cycles

\[(x + y)^{n-1} = \sum_{i, j} c(n - 1, i + j) \binom{i + j}{i} x^i y^j \]

\#\{T ∈ \mathcal{PT}(n) : \text{urr}(T) - 1 = i, \text{topone}(T) = j\} = c(n - 1, i + j) \binom{i + j}{i}

- If \(T \leftrightarrow \pi = \sigma 1 \tau \),

\text{urr}(T) - 1 = \text{RLmin}(\tau) = i
\text{topone}(T) = \text{RLmax}(\sigma) = j
Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

\[
\sum_{T \in \mathcal{P}T(n)} x^{\text{urr}(T) - 1} y^{\text{topone}(T)} = (x + y)_{n-1} = (x + y)(x + y + 1) \cdots (x + y + n - 2).
\]

- \(c(n, k) \): the number \(\pi \in S_n \) with \(k \) cycles

\[
(x + y)_{n-1} = \sum_{i,j} c(n - 1, i + j) \binom{i + j}{i} x^i y^j
\]

\[
\#\{T \in \mathcal{P}T(n) : \text{urr}(T) - 1 = i, \ \text{topone}(T) = j\} = c(n - 1, i + j) \binom{i + j}{i}
\]

- If \(T \leftrightarrow \pi = \sigma 1 \tau \),

\[
\text{urr}(T) - 1 = \text{RLmin}(\tau) = i \\
\text{topone}(T) = \text{RLmax}(\sigma) = j
\]

- \(\tau \) is a set of \(i \) cycles and \(\sigma \) is a set of \(j \) cycles.
Nadeau’s bijective proof of a theorem of Corteel and Nadeau

Theorem

\[\sum_{T \in \mathcal{PT}(n)} x^\text{urr}(T) - 1 y^\text{topone}(T) = (x + y)^{n-1} = (x + y)(x + y + 1) \cdots (x + y + n - 2). \]

- \(c(n, k) \): the number \(\pi \in S_n \) with \(k \) cycles

\[(x + y)^{n-1} = \sum_{i,j} c(n - 1, i + j) \binom{i+j}{i} x^i y^j \]

\[\#\{T \in \mathcal{PT}(n) : \text{urr}(T) - 1 = i, \text{topone}(T) = j\} = c(n - 1, i + j) \binom{i+j}{i} \]

- If \(T \leftrightarrow \pi = \sigma 1 \tau \),

\[\text{urr}(T) - 1 = \text{RLmin}(\tau) = i \]
\[\text{topone}(T) = \text{RLmax}(\sigma) = j \]

- \(\tau \) is a set of \(i \) cycles and \(\sigma \) is a set of \(j \) cycles.
- \(\tau \cup \sigma \) is a permutation of \(\{2, 3, \ldots, n\} \) with \(i + j \) cycles.
Another bijective proof

Theorem

We have

\[\sum_{T \in \mathcal{P}T(n)} x^{\text{urr}(T)} - 1 y^{\text{topone}(T)} = (x + y)^{n-1}. \]
Another bijective proof

Theorem

We have

\[
\sum_{T \in \mathcal{P}T(n)} x^{u_{\text{rr}}(T)-1} y^{\text{topone}(T)} = (x + y)_{n-1}.
\]

- Let \(x, y\) be any positive integers and let \(N = n + x + y - 2\).
Another bijective proof

Theorem

We have

\[\sum_{T \in \mathcal{P}T(n)} x^{\text{urr}(T) - 1} y^{\text{topone}(T)} = (x + y)^{n - 1}. \]

- Let \(x, y \) be any positive integers and let \(N = n + x + y - 2. \)
- Given \(T \in \mathcal{P}T(n), \) we construct \(T' \in \mathcal{P}T(N) \) as follows.
Another bijective proof

\[\begin{align*}
T' &\text{ satisfies the following.} \\
x - 1 &\quad y - 1
\end{align*} \]
Another bijective proof

\[\{ x - 1 \} \times \{ y - 1 \} \]

\[T' \] satisfies the following.

- The first \(y \) steps are south and the first \(y \) rows are unrestricted.
Another bijective proof

T' satisfies the following.

1. The first y steps are south and the first y rows are unrestricted.
2. The last $x - 1$ steps are west and the last $x - 1$ columns have ↑’s in the first row.
Another bijective proof

T' satisfies the following.

1. The first y steps are south and the first y rows are unrestricted.
2. The last $x - 1$ steps are west and the last $x - 1$ columns have ↑’s in the first row.

$\pi' = \Phi(T')$ satisfies the following. ($\pi' = \sigma 1\tau$)
Another bijective proof

\(T' \) satisfies the following.
1. The first \(y \) steps are south and the first \(y \) rows are unrestricted.
2. The last \(x - 1 \) steps are west and the last \(x - 1 \) columns have ↑’s in the first row.

\(\pi' = \Phi(T') \) satisfies the following. \((\pi' = \sigma 1\tau) \)
1. 1, 2, \ldots, \(y \) are RL-minima of \(\pi' \)
Another bijective proof

$\{x - 1\} \{y - 1\}$

$\pi' = \Phi(T')$ satisfies the following. ($\pi' = \sigma \tau$)

1. $1, 2, \ldots, y$ are RL-minima of π'
2. $N, N - 1, \ldots, N - x + 2$ are RL-maxima of σ
Another bijective proof

\[T' \] satisfies the following.

1. The first \(y \) steps are south and the first \(y \) rows are unrestricted.
2. The last \(x - 1 \) steps are west and the last \(x - 1 \) columns have ↑'s in the first row.

\[\pi' = \Phi(T') \] satisfies the following. \((\pi' = \sigma 1 \tau)\)

1. 1, 2, \ldots, \(y \) are RL-minima of \(\pi' \)
2. \(N, N - 1, \ldots, N - x + 2 \) are RL-maxima of \(\sigma \)

\(N, N - 1, \ldots, N - x + 2, 1, 2, \ldots, y \) are arranged in this order in \(\pi' \).
An unrestricted column of $T \in \mathcal{PT}(n)$ is a column without 0 as follows.

\[
1 \quad \ldots \quad 0
\]
An **unrestricted column** of $T \in \mathcal{PT}(n)$ is a column without 0 as follows.

\[
\begin{array}{cccc}
1 & \cdots & 0 \\
\end{array}
\]

$\text{urc}(T)$: the number of unrestricted columns of T.
An unrestricted column of $T \in \mathcal{PT}(n)$ is a column without 0 as follows.

$$1 \quad \cdots \quad 0$$

$\text{urc}(T)$: the number of unrestricted columns of T.

Let

$$P_t(x) = \sum_{n \geq 0} \left(\sum_{T \in \mathcal{PT}(n)} t^{\text{urc}(T)} \right) x^n.$$
Unrestricted Columns

- An unrestricted column of $T \in \mathcal{PT}(n)$ is a column without 0 as follows.

 \[
 \begin{array}{cccc}
 1 & \cdots & 0 \\
 \end{array}
 \]

- $\text{urc}(T)$: the number of unrestricted columns of T.

Let

\[
P_t(x) = \sum_{n \geq 0} \left(\sum_{T \in \mathcal{PT}(n)} t^{\text{urc}(T)} \right) x^n.
\]

Theorem

We have

\[
P_t(x) = \frac{1 + E_t(x)}{1 + (t - 1)x E_t(x)},
\]

where

\[
E_t(x) = \sum_{n \geq 1} n(t)_{n-1} x^n.
\]
The case $t = 2$: connected permutations

Corollary

\[\sum_{n \geq 0} \sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} x^n = \frac{1}{x} \left(1 - \frac{1}{\sum_{n \geq 0} n! x^n} \right). \]
The case $t = 2$: connected permutations

Corollary

\[
\sum_{n \geq 0} \sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} x^n = \frac{1}{x} \left(1 - \frac{1}{\sum_{n \geq 0} n! x^n} \right).
\]

- $\pi = \pi_1 \cdots \pi_n \in S_n$ is a connected permutation if there is no $k < n$ satisfying $\pi_1 \cdots \pi_k \in S_k$.
The case $t = 2$: connected permutations

Corollary

$$
\sum_{n \geq 0} \sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} x^n = \frac{1}{x} \left(1 - \frac{1}{\sum_{n \geq 0} n!x^n} \right).
$$

- $\pi = \pi_1 \cdots \pi_n \in S_n$ is a **connected permutation** if there is no $k < n$ satisfying $\pi_1 \cdots \pi_k \in S_k$.

- $CP(n)$: the set of connected permutations in S_n

$$
\sum_{n \geq 0} \#CP(n)x^n = 1 - \frac{1}{\sum_{n \geq 0} n!x^n}
$$
The case \(t = 2 \) : connected permutations

Corollary

\[
\sum_{n \geq 0} \sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} x^n = \frac{1}{x} \left(1 - \frac{1}{\sum_{n \geq 0} n!x^n} \right).
\]

- \(\pi = \pi_1 \cdots \pi_n \in S_n \) is a **connected permutation** if there is no \(k < n \) satisfying \(\pi_1 \cdots \pi_k \in S_k \).

- \(\text{CP}(n) \) : the set of connected permutations in \(S_n \)

\[
\sum_{n \geq 0} \#\text{CP}(n)x^n = 1 - \frac{1}{\sum_{n \geq 0} n!x^n}
\]

Corollary

\[
\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} = \#\text{CP}(n + 1).
\]
The case $t = 2$: connected permutations

Corollary

$$\sum_{n \geq 0} \sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} x^n = \frac{1}{x} \left(1 - \frac{1}{\sum_{n \geq 0} n! x^n} \right).$$

- $\pi = \pi_1 \cdots \pi_n \in S_n$ is a **connected permutation** if there is no $k < n$ satisfying $\pi_1 \cdots \pi_k \in S_k$.
- $CP(n)$: the set of connected permutations in S_n

$$\sum_{n \geq 0} \#CP(n) x^n = 1 - \frac{1}{\sum_{n \geq 0} n! x^n}$$

Corollary

$$\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} = \#CP(n + 1).$$

- Combinatorial proof?
A **shift-connected permutation** is \(\pi = \pi_1 \cdots \pi_n \in S_n \) with \(\pi_j = 1 \) for some \(j \in [n] \) such that
A **shift-connected permutation** is $\pi = \pi_1 \cdots \pi_n \in S_n$ with $\pi_j = 1$ for some $j \in [n]$ such that

there is no integer $i < j$ with

$$\pi_i \pi_{i+1} \cdots \pi_j \in S_{j-i+1}$$
A **shift-connected permutation** is $\pi = \pi_1 \cdots \pi_n \in S_n$ with $\pi_j = 1$ for some $j \in [n]$ such that

there is no integer $i < j$ with

$$\pi_i \pi_{i+1} \cdots \pi_j \in S_{j-i+1}$$

$SCP(n)$: the set of shift-connected permutations in S_n
A **shift-connected permutation** is $\pi = \pi_1 \cdots \pi_n \in S_n$ with $\pi_j = 1$ for some $j \in [n]$ such that there is no integer $i < j$ with

$$\pi_i \pi_{i+1} \cdots \pi_j \in S_{j-i+1}$$

SCP(n) : the set of shift-connected permutations in S_n

Proposition

$$\#CP(n) = \#SCP(n)$$
A bijection between $S_n \setminus CP(n)$ and $S_n \setminus SCP(n)$

- Given $\pi = \pi_1 \cdots \pi_n \in S_n \setminus CP(n)$, define $\pi' \in S_n \setminus SCP(n)$ as follows.
A bijection between $S_n \setminus CP(n)$ and $S_n \setminus SCP(n)$

- Given $\pi = \pi_1 \cdots \pi_n \in S_n \setminus CP(n)$, define $\pi' \in S_n \setminus SCP(n)$ as follows.
- Find the smallest integer $k < n$ such that
 \[\sigma = \pi_1 \cdots \pi_k \in S_k \]
A bijection between $S_n \setminus CP(n)$ and $S_n \setminus SCP(n)$

- Given $\pi = \pi_1 \cdots \pi_n \in S_n \setminus CP(n)$, define $\pi' \in S_n \setminus SCP(n)$ as follows.
- Find the smallest integer $k < n$ such that

 $\sigma = \pi_1 \cdots \pi_k \in S_k$

- Decompose π as

 $\pi = \sigma \tau(k + 1) \rho$
A bijection between $S_n \setminus CP(n)$ and $S_n \setminus SCP(n)$

- Given $\pi = \pi_1 \cdots \pi_n \in S_n \setminus CP(n)$, define $\pi' \in S_n \setminus SCP(n)$ as follows.
- Find the smallest integer $k < n$ such that

$$\sigma = \pi_1 \cdots \pi_k \in S_k$$

- Decompose π as

$$\pi = \sigma \tau (k+1) \rho$$

- Define

$$\sigma^+ = \sigma_1^+ \cdots \sigma_k^+, \quad \sigma_i^+ = \sigma_i + 1$$

$$\pi' = \tau \sigma^+ 1 \rho$$
A bijection between $S_n \setminus CP(n)$ and $S_n \setminus SCP(n)$

- Given $\pi = \pi_1 \cdots \pi_n \in S_n \setminus CP(n)$, define $\pi' \in S_n \setminus SCP(n)$ as follows.
- Find the smallest integer $k < n$ such that
 \[\sigma = \pi_1 \cdots \pi_k \in S_k \]
- Decompose π as
 \[\pi = \sigma \tau (k + 1) \rho \]
- Define
 \[\sigma^+ = \sigma_1^+ \cdots \sigma_k^+ , \quad \sigma_i^+ = \sigma_i + 1 \]
 \[\pi' = \tau \sigma^+ 1 \rho \]

Example
A bijection between $S_n \setminus CP(n)$ and $S_n \setminus SCP(n)$

- Given $\pi = \pi_1 \cdots \pi_n \in S_n \setminus CP(n)$, define $\pi' \in S_n \setminus SCP(n)$ as follows.
- Find the smallest integer $k < n$ such that
 $$\sigma = \pi_1 \cdots \pi_k \in S_k$$
- Decompose π as
 $$\pi = \sigma \tau (k + 1) \rho$$
- Define
 $$\sigma^+ = \sigma_1^+ \cdots \sigma_k^+, \quad \sigma_i^+ = \sigma_i + 1$$
 $$\pi' = \tau \sigma^+ 1 \rho$$

Example

- Let $\pi \in S_n \setminus CP(n)$ be
 $$\pi = 4, 2, 5, 1, 3, 7, 6, 9, 8$$
A bijection between $S_n \setminus CP(n)$ and $S_n \setminus SCP(n)$

- Given $\pi = \pi_1 \cdots \pi_n \in S_n \setminus CP(n)$, define $\pi' \in S_n \setminus SCP(n)$ as follows.
- Find the smallest integer $k < n$ such that
 \[\sigma = \pi_1 \cdots \pi_k \in S_k \]
- Decompose π as
 \[\pi = \sigma \tau (k + 1) \rho \]
- Define
 \[\sigma^+ = \sigma_1^+ \cdots \sigma_k^+, \quad \sigma_i^+ = \sigma_i + 1 \]
 \[\pi' = \tau \sigma^+ 1 \rho \]

Example

- Let $\pi \in S_n \setminus CP(n)$ be
 \[\pi = 4, 2, 5, 1, 3, \underbrace{7, 6, 9, 8}_\tau \]
- Then $\pi' \in S_n \setminus SCP(n)$ is
 \[\pi' = \underbrace{7, 5, 3, 6, 2, 4}_\tau, \underbrace{1}_{\sigma^+}, \underbrace{9, 8}_\rho \]
A combinatorial proof of \[
\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} = \#CP(n+1)
\]

Proposition

\[
\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} \text{ is the number of } T \in \mathcal{PT}(n+1) \text{ without a column containing 1 only in the first row.}
\]
A combinatorial proof of \[
\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} = \# CP(n + 1)
\]

Proposition

\[
\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} \text{ is the number of } T \in \mathcal{PT}(n + 1) \text{ without a column containing 1 only in the first row.}
\]
A combinatorial proof of \[\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} = \#CP(n+1) \]

Proposition

\[\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} \] is the number of \(T \in \mathcal{PT}(n+1) \) without a column containing 1 only in the first row.

Proposition

- For \(\pi = \Phi(T) \),
A combinatorial proof of \[
\sum_{T \in \mathcal{P}T(n)} 2^{\text{urc}(T)} = \#CP(n + 1)
\]

Proposition
\[
\sum_{T \in \mathcal{P}T(n)} 2^{\text{urc}(T)} \text{ is the number of } T \in \mathcal{P}T(n + 1) \text{ without a column containing 1 only in the first row.}
\]

Proposition

- For \(\pi = \Phi(T) \),
- \(T \) has a column which has a 1 only in the first row if and only if
A combinatorial proof of \[\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} = \#CP(n + 1) \]

Proposition

\[\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} \] is the number of \(T \in \mathcal{PT}(n + 1) \) without a column containing 1 only in the first row.

Proposition

- For \(\pi = \Phi(T) \),
- \(T \) has a column which has a 1 only in the first row if and only if
- \(\pi \not\in SCP(n) \)
A combinatorial proof of \[\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} = \#CP(n + 1) \]

Proposition

\[\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} \text{ is the number of } T \in \mathcal{PT}(n + 1) \text{ without a column containing 1 only in the first row.} \]

Proposition

- For \(\pi = \Phi(T) \),
- \(T \) has a column which has a 1 only in the first row if and only if \(\pi \not\in SCP(n) \)

Proposition

\[\sum_{T \in \mathcal{PT}(n)} 2^{\text{urc}(T)} = \#SCP(n + 1) = \#CP(n + 1) \]
The case $t = -1$: sign-imbalance

Corollary

$$P_{-1}(x) = \sum_{n \geq 0} \sum_{T \in \mathcal{P}T(n)} (-1)^{\text{urc}(T)} x^n = \frac{1 - x}{1 - 2x + 2x^2}$$

$$= \frac{1}{2} \cdot \left(\frac{1}{1 - (1 + i)x} + \frac{1}{1 - (1 - i)x} \right)$$
The case $t = -1$: sign-imbalance

Corollary

$$P_{-1}(x) = \sum_{n \geq 0} \sum_{T \in \mathcal{P}T(n)} (-1)^{\text{urc}(T)} x^n = \frac{1 - x}{1 - 2x + 2x^2}$$

$$= \frac{1}{2} \cdot \left(\frac{1}{1 - (1 + i)x} + \frac{1}{1 - (1 - i)x} \right)$$

Definition

For $T \in \mathcal{P}T(n)$, define the **sign** of T by

$$\text{sgn}(T) = (-1)^{\text{urc}(T)}.$$
The case $t = -1$: sign-imbalance

Corollary

$$P_{-1}(x) = \sum_{n \geq 0} \sum_{T \in \mathcal{PT}(n)} (-1)^{\text{urc}(T)} x^n = \frac{1 - x}{1 - 2x + 2x^2} = \frac{1}{2} \left(\frac{1}{1 - (1 + i)x} + \frac{1}{1 - (1 - i)x} \right)$$

Definition

For $T \in \mathcal{PT}(n)$, define the **sign** of T by

$$\text{sgn}(T) = (-1)^{\text{urc}(T)}.$$

Corollary

$$\sum_{T \in \mathcal{PT}(n)} \text{sgn}(T) = \frac{(1 + i)^n + (1 - i)^n}{2} = \begin{cases}
(-1)^k \cdot 2^{2k}, & \text{if } n = 4k \text{ or } n = 4k + 1, \\
0, & \text{if } n = 4k + 2, \\
(-1)^{k+1} \cdot 2^{2k+1}, & \text{if } n = 4k + 3.
\end{cases}$$
The sign of a standard Young tableau is defined as follows.

\[
\text{sgn} \left(\begin{array}{ccc}
1 & 2 & 5 \\
3 & 4 & \end{array} \right) = \text{sgn}(12534) = 1
\]
The **sign** of a standard Young tableau is defined as follows.

\[
\text{sgn} \left(\begin{array}{ccc}
1 & 2 & 5 \\
3 & 4 \\
\end{array} \right) = \text{sgn}(12534) = 1
\]

Stanley conjectured

\[
\sum_{T \in \text{SYT}(n)} \text{sgn}(T) = 2^{\left\lfloor \frac{n}{2} \right\rfloor}
\]
The sign of a standard Young tableau is defined as follows.

\[
\text{sgn} \left(\begin{array}{ccc}
1 & 2 & 5 \\
3 & 4 &
\end{array} \right) = \text{sgn}(12534) = 1
\]

Stanley conjectured

\[
\sum_{T \in SYT(n)} \text{sgn}(T) = 2^\left\lfloor \frac{n}{2} \right\rfloor
\]

Proved by Lam and Sjöstrand independently
The sign of a standard Young tableau is defined as follows.

\[\text{sgn} \left(\begin{array}{ccc} 1 & 2 & 5 \\ 3 & 4 & \end{array} \right) = \text{sgn}(12534) = 1 \]

Stanley conjectured

\[\sum_{T \in \text{SYT}(n)} \text{sgn}(T) = 2^{\left\lfloor \frac{n}{2} \right\rfloor} \]

Proved by Lam and Sjöstrand independently

Generalized to skew SYTs by Kim
The sign of a standard Young tableau is defined as follows.

$$\text{sgn} \left(\begin{array}{ccc} 1 & 2 & 5 \\ 3 & 4 \end{array} \right) = \text{sgn}(12534) = 1$$

Stanley conjectured

$$\sum_{T \in \text{SYT}(n)} \text{sgn}(T) = 2 \left\lfloor \frac{n}{2} \right\rfloor$$

Proved by Lam and Sjöstrand independently

Generalized to skew SYTs by Kim

If $n \not\equiv 2 \pmod{4}$,

$$\left| \sum_{T \in \text{PT}(n)} \text{sgn}(T) \right| = \left| \sum_{T \in \text{SYT}(n)} \text{sgn}(T) \right| = 2 \left\lfloor \frac{n}{2} \right\rfloor.$$
The yellow cells are the **diagonal** cells.
The yellow cells are the **diagonal** cells.

The row containing the diagonal cell in Column d is labeled with $-d$.
Type B permutation tableaux

- Each column has at least one 1.
Type B permutation tableaux

- Each column has at least one 1.
- There is **no** configuration like

\[
\begin{array}{c}
1 \\
\vdots \\
1 \ldots 0 \\
\end{array}
\quad \text{or} \quad
\begin{array}{c}
\vdots \\
1 \ldots 0 \\
\end{array}
\]
Type B permutation tableaux

- Each column has at least one 1.
- There is **no** configuration like

\[
\begin{array}{cccccc}
1 \\
\vdots \\
1 \\
\end{array}
\quad \text{or} \quad
\begin{array}{cccc}
1 & \cdots & 0
\end{array}
\]
Type B permutation tableaux

- Each column has at least one 1.
- There is no configuration like

\[
\begin{array}{c}
1 \\
\vdots \\
1 \quad \ldots \quad 0
\end{array}
\]

or

\[
\begin{array}{c}
1 \\
\vdots \\
1 \quad \ldots \quad 0
\end{array}
\]
Type B permutation tableaux

- Each column has at least one 1.
- There is no configuration like

```
1 1 1 ...
```

or

```
0 0 0 ...
```

NO

NO

NO

NO
Type B permutation tableaux

1. Each column has at least one 1.
2. There is no configuration like

![Tableaux Diagram]

NO

NO

YES!
The alternative representation

- Topmost 1 is ↑
The alternative representation

- Topmost 1 is ↑
- Rightmost restricted 0 is ←
The alternative representation

- Topmost 1 is \(\uparrow \)
- Rightmost restricted 0 is \(\leftarrow \)
- Cut off the diagonal cells.
The alternative representation

- Topmost 1 is ↑
- Rightmost restricted 0 is ←
- Cut off the diagonal cells.
The alternative representation

- Topmost 1 is ↑
- Rightmost restricted 0 is ←
- Cut off the diagonal cells.

No arrow points to another.
The alternative representation

- Topmost 1 is ↑
- Rightmost restricted 0 is ←
- Cut off the diagonal cells.

No arrow points to another.
- The diagonal line acts like a mirror!
A theorem of Lam and Williams

Theorem (Lam and Williams)

$$\sum_{T \in \mathcal{PT}_B(n)} x^\text{urr}(T) - 1 z^\text{diag}(T) = (1 + z)^n (x + 1)^{n-1}$$
A theorem of Lam and Williams

Theorem (Lam and Williams)

\[\sum_{T \in \mathcal{PT}_B(n)} x^{\text{urr}(T) - 1} z^{\text{diag}(T)} = (1 + z)^n (x + 1)^{n-1} \]

- \(\text{diag}(T) \): the number of diagonal cells with 1
A theorem of Lam and Williams

Theorem (Lam and Williams)

\[\sum_{T \in \mathcal{PT}_B(n)} x^{\text{urr}(T)} - 1 \cdot z^{\text{diag}(T)} = (1 + z)^n (x + 1)^{n-1} \]

- \(\text{diag}(T) \): the number of diagonal cells with 1
- \(\text{urr}(T) \): the number of unrestricted rows, i.e. without 1.

\[
\begin{align*}
1 \\
\vdots \\
0
\end{align*}
\]

and

0
A theorem of Lam and Williams

Theorem (Lam and Williams)

\[
\sum_{T \in \mathcal{PT}_B(n)} x^{\text{urr}(T) - 1} z^{\text{diag}(T)} = (1 + z)^n (x + 1)^{n-1}
\]

- \text{diag}(T) : the number of diagonal cells with 1
- \text{urr}(T) : the number of unrestricted rows, i.e. without

\[
\begin{align*}
1 \\
\vdots \\
0
\end{align*}
\]

and

\[
\begin{align*}
0 \\
\vdots \\
1
\end{align*}
\]

Theorem

\[
\sum_{T \in \mathcal{PT}_B(n)} x^{\text{urr}(T) - 1} y^{\text{top}_0,1(T)} z^{\text{diag}(T)} = (1 + z)^n (x + y)^{n-1}
\]
Generalization of a theorem of Lam and Williams

For $T \in \mathcal{PT}_B(n)$ with the topmost nonzero row labeled m,

$$\text{top}_{0,1}(T) = (\# \text{ 1s in Row } m \text{ except in the diagonal})$$

$$+ (\# \text{ rightmost restricted 0s in Column } -m)$$

$$= \# \text{ arrows in Row } m \text{ and Column } -m$$
A type B extension of Corteel and Nadeau’s bijection

\[\begin{array} {cccccc}
10 & 9 & 8 & 6 & 3 & 2 \\
-10 & & & & & \\
-9 & & & & & \\
-8 & \uparrow & & & & \\
-6 & & & & & \\
-3 & \leftarrow & & & & \\
-2 & & & & & \\
1 & \leftarrow & \uparrow & & & \\
4 & \uparrow & & & & \\
5 & \leftarrow & & & & \\
7 & \leftarrow & \uparrow & & & \\
11 & \leftarrow & \uparrow & \leftarrow & \uparrow & \\
\end{array} \]

\(-8,4,11\)
A type B extension of Corteel and Nadeau’s bijection

7, 10, −8, 4, 11
A type B extension of Corteel and Nadeau’s bijection

9, 7, 10, −8, 4, 11
A type B extension of Corteel and Nadeau’s bijection

9, 7, 10, $-3, 5$ – 8, 4, 11
A type B extension of Corteel and Nadeau’s bijection

9, 7, 10, -3, 5, -8, 6, 4, 11
A type B extension of Corteel and Nadeau’s bijection

9, 7, 10, 1, -3, 5 $- 8, 6, 4, 11$
A type B extension of Corteel and Nadeau’s bijection

9, 7, 10, 2, 1, −3, 5 − 8, 6, 4, 11
Some properties of the type B bijection

Proposition

Then,

\[
\begin{array}{ccccccc}
-10 & -9 & -8 & -6 & -3 & -2 & 1 \\
\uparrow & & & & & & \\
10 & 9 & 8 & 6 & 3 & 2 & \\
\end{array}
\]

\[
\pi = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11
\]

\[
\begin{align*}
\sigma & \quad \tau & \quad m & \quad \rho \\
\end{align*}
\]
Some properties of the type B bijection

Proposition

$$\pi = \Phi_B(T)$$

Then,

$$\pi = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11$$
Some properties of the type B bijection

Proposition

- $\pi = \Phi_B(T)$
- Row m is the topmost nonzero row of T

Then,

$$\pi = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11$$
Some properties of the type B bijection

Proposition

- $\pi = \Phi_B(T)$
- Row m is the topmost nonzero row of T
- Decompose $\pi = \sigma \tau m \rho$

Then,

$\pi = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11$
Some properties of the type B bijection

Proposition

- $\pi = \Phi_B(T)$
- \text{Row } m \text{ is the topmost nonzero row of } T$
- \text{Decompose } \pi = \sigma \tau m \rho$
 \hspace{1cm} $\min(\pi) = m$

Then,

$\pi = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11$
Some properties of the type B bijection

Proposition

- $\pi = \Phi_B(T)$
- Row m is the topmost nonzero row of T
- Decompose $\pi = \sigma \tau m \rho$
 - $\min(\pi) = m$
 - the last element of σ is $> |m|$

Then,

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>6</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\pi = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11$
Some properties of the type B bijection

Proposition

- $\pi = \Phi_B(T)$
- **Row m is the topmost nonzero row of T**
- **Decompose** $\pi = \sigma \tau m \rho$
 - $\min(\pi) = m$
 - the last element of σ is $> |m|$
 - each element of τ is $< |m|$

Then,

<table>
<thead>
<tr>
<th>σ</th>
<th>τ</th>
<th>m</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some properties of the type B bijection

Proposition

- $\pi = \Phi_B(T)$
- Row m is the topmost nonzero row of T
- Decompose $\pi = \sigma \tau m \rho$
 - $\min(\pi) = m$
 - the last element of σ is $> |m|$
 - each element of τ is $< |m|$

Then,

- Columns without \uparrow ↔ negative integers in π
Some properties of the type B bijection

Proposition

- $\pi = \Phi_B(T)$
- *Row m is the topmost nonzero row of T*
- Decompose $\pi = \sigma \tau m \rho$
 - $\min(\pi) = m$
 - *the last element of σ is $> |m|$*
 - *each element of τ is $< |m|$*

Then,

1. **Columns without** \uparrow
 \leftrightarrow negative integers in π

2. **Unrestricted rows of T**
 \leftrightarrow RL-minima of π

\[
\pi = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11
\]
Some properties of the type B bijection

Proposition

- $\pi = \Phi_B(T)$
- **Row m is the topmost nonzero row of T**
- **Decompose** $\pi = \sigma \tau m \rho$
 - $\min(\pi) = m$
 - The last element of σ is $> |m|$
 - Each element of τ is $< |m|$

Then,

1. **Columns without** \uparrow
 - \leftrightarrow negative integers in π
2. **Unrestricted rows of T**
 - \leftrightarrow RL-minima of π
3. **Columns with** \uparrow **in Row m**
 - \leftrightarrow RL-maxima of σ

\[
\pi = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11
\]
Some properties of the type B bijection

Proposition

- $\pi = \Phi_B(T)$
- *Row* m *is the topmost nonzero row of* T
- Decompose $\pi = \sigma \tau m \rho$
 - $\min(\pi) = m$
 - *the last element of* σ *is* $>|m|$
 - *each element of* τ *is* $<|m|$

Then,

1. **Columns without** \uparrow
 - \leftrightarrow *negative integers in* π
2. **Unrestricted rows of** T
 - \leftrightarrow *RL-minima of* π
3. **Columns with** \uparrow *in Row* m
 - \leftrightarrow *RL-maxima of* σ
4. **Rows with** \leftarrow *in Column* $|m|$
 - \leftrightarrow *RL-minima of* τ

$\pi = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11$
Generalization Theorem

\[\sum_{T \in \mathcal{PT}_B(n)} x^{\text{urr}(T)} y^{\text{top}_0,1(T)} z^{\text{diag}(T)} = (1 + z)^n (x + y)^{n-1} \]
Generalization

Theorem

\[\sum_{T \in \mathcal{T}_B(n)} x^{\text{urr}(T)} - 1 \cdot y^{\text{top}_{0,1}(T)} \cdot z^{\text{diag}(T)} = (1 + z)^n (x + y)^{n-1} \]
Generalization
Theorem

\[
\sum_{T \in \mathcal{PT}_B(n)} x^{\text{urr}(T)} - 1 \cdot y^{\text{top}_0,1(T)} \cdot z^{\text{diag}(T)} = (1 + z)^n (x + y)_{n-1}
\]
Zigzag maps

<table>
<thead>
<tr>
<th></th>
<th>12</th>
<th>9</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zigzag maps

1 0 0 1 0 0 1
2 0 0 0 1 1 1
4 0 0 0 0 1
7 0 1 1
10 1
11 0
13

1 12 9 8 6 5 3
2 1
4 1
7 1
10 1
11 1
13

1 12 9 8 6 5 3
2 1
4 1
7 1
10 1
11 1
13
Zigzag maps

12 9 8 6 5 3
10 0 1 0 0 1
0 0 0 1 1 1
4 0 0 0 0 1
0 1 0
7
10 1
11 0
13

12 9 8 6 5 3
11 10 9 8 7 6
10 9 8 7 6 5
11 10 9 8 7 6

12 9 8 6 5 3
11 10 9 8 7 6
10 9 8 7 6 5
11 10 9 8 7 6

12 9 8 6 5 3
11 10 9 8 7 6
10 9 8 7 6 5
11 10 9 8 7 6
Theorem

The zigzag map on the alternative representation is the same as $\varphi \circ \Phi$.
Theorem

The zigzag map on the alternative representation is the same as $\varphi \circ \Phi$.

Example
Theorem
The zigzag map on the alternative representation is the same as $\varphi \circ \Phi$.

Example
- $\Phi(T) = 4, 6, 5, 2, 8, 3, 1, 9, 7, 11, 12, 10$
Theorem

The zigzag map on the alternative representation is the same as $\varphi \circ \Phi$.

Example

- $\Phi(T) = 4, 6, 5, 2, 8, 3, 1, 9, 7, 11, 12, 10$
- $\varphi \circ \Phi(T) = (4, 6, 5, 2, 8, 3, 1)(9, 7)(11, 12, 10)$
Theorem

The zigzag map on the type B alternative representation is $\varphi \circ \Phi_B$.
The zigzag map on the type B alternative representation

Theorem

The zigzag map on the type B alternative representation is $\varphi \circ \Phi_B$.

Example
The zigzag map on the type B alternative representation

Theorem

The zigzag map on the type B alternative representation is \(\varphi \circ \Phi_B \).

Example

\[\Phi_B(T) = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11 \]
Theorem

The zigzag map on the type B alternative representation is \(\varphi \circ \Phi_B \).

Example

- \(\Phi_B(T) = 9, 7, 10, 6, 2, 1, -3, 5, -8, 4, 11 \)
- \(\varphi \circ \Phi_B(T) = (9, 7, 10, 6, 2, 1, -3, 5, -8)(4)(11) \)
Further study

- Find a combinatorial proof of the following:

\[
\sum_{T \in \mathcal{PT}(n)} \text{sgn}(T) = \frac{(1 + i)^n + (1 - i)^n}{2} = \begin{cases}
(-1)^k \cdot 2^{2k}, & \text{if } n = 4k \text{ or } n = 4k + 1, \\
0, & \text{if } n = 4k + 2, \\
(-1)^{k+1} \cdot 2^{2k+1}, & \text{if } n = 4k + 3.
\end{cases}
\]
Further study

- Find a combinatorial proof of the following:
 \[
 \sum_{T \in PT(n)} \text{sgn}(T) = \frac{(1 + i)^n + (1 - i)^n}{2} = \begin{cases}
 (-1)^k \cdot 2^{2k}, & \text{if } n = 4k \text{ or } n = 4k + 1, \\
 0, & \text{if } n = 4k + 2, \\
 (-1)^{k+1} \cdot 2^{2k+1}, & \text{if } n = 4k + 3.
 \end{cases}
 \]

- If \(n \not\equiv 2 \mod 4 \), then
 \[
 \left| \sum_{T \in PT(n)} \text{sgn}(T) \right| = \left| \sum_{T \in SYT(n)} \text{sgn}(T) \right| = 2 \left\lfloor \frac{n}{2} \right\rfloor.
 \]
Further study

- Find a combinatorial proof of the following:

\[
\sum_{T \in PT(n)} \text{sgn}(T) = \frac{(1 + i)^n + (1 - i)^n}{2} = \begin{cases}
(-1)^k \cdot 2^{2k}, & \text{if } n = 4k \text{ or } n = 4k + 1, \\
0, & \text{if } n = 4k + 2, \\
(-1)^{k+1} \cdot 2^{2k+1}, & \text{if } n = 4k + 3.
\end{cases}
\]

- If \(n \not\equiv 2 \mod 4 \), then

\[
\left| \sum_{T \in PT(n)} \text{sgn}(T) \right| = \left| \sum_{T \in SYT(n)} \text{sgn}(T) \right| = 2^{\left\lfloor \frac{n}{2} \right\rfloor}.
\]

- Find a type B analog of the above formula.
Further study

- Find a combinatorial proof of the following:

\[\sum_{T \in \mathcal{PT}(n)} \text{sgn}(T) = \frac{(1 + i)^n + (1 - i)^n}{2} = \begin{cases}
(-1)^k \cdot 2^{2k}, & \text{if } n = 4k \text{ or } n = 4k + 1, \\
0, & \text{if } n = 4k + 2, \\
(-1)^{k+1} \cdot 2^{2k+1}, & \text{if } n = 4k + 3.
\end{cases} \]

- If \(n \not\equiv 2 \mod 4 \), then

\[\left| \sum_{T \in \mathcal{PT}(n)} \text{sgn}(T) \right| = \left| \sum_{T \in \mathcal{SYT}(n)} \text{sgn}(T) \right| = 2^\left\lfloor \frac{n}{2} \right\rfloor. \]

- Find a type \(B \) analog of the above formula.
Further study

- Find a combinatorial proof of the following:

\[
\sum_{T \in \mathcal{PT}(n)} \text{sgn}(T) = \frac{(1 + i)^n + (1 - i)^n}{2} = \begin{cases} (-1)^k \cdot 2^{2k}, & \text{if } n = 4k \text{ or } n = 4k + 1, \\ 0, & \text{if } n = 4k + 2, \\ (-1)^{k+1} \cdot 2^{2k+1}, & \text{if } n = 4k + 3. \end{cases}
\]

- If \(n \not\equiv 2 \mod 4 \), then

\[
\left| \sum_{T \in \mathcal{PT}(n)} \text{sgn}(T) \right| = \left| \sum_{T \in \mathcal{SYT}(n)} \text{sgn}(T) \right| = 2^{\left\lfloor \frac{n}{2} \right\rfloor}.
\]

- Find a type \(B \) analog of the above formula.

Thank you for your attention!