|
SIGMA 14 (2018), 029, 12 pages arXiv:1703.08279
https://doi.org/10.3842/SIGMA.2018.029
On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies
Andrzej Czarnecki
Jagiellonian University, Łojasiewicza 6, 30-348 Krakow, Poland
Received February 16, 2018, in final form March 24, 2018; Published online March 30, 2018
Abstract
We present a construction (and classification) of certain invariant 2-forms on the real symplectic group. They are used to define a symplectic form on the quotient by a maximal torus and to ''lift'' a symplectic structure from a symplectic manifold to the bundle of frames. This is a by-product of a failed attempt to prove certain finiteness theorems for basic symplectic cohomologies. In the last part of the paper we include a valid proof.
Key words:
symplectic cohomology; basic cohomology.
pdf (363 kb)
tex (20 kb)
References
-
Angella D., Cohomological aspects in complex non-Kähler geometry, Lecture Notes in Math., Vol. 2095, Springer, Cham, 2014.
-
Bak L., Czarnecki A., A remark on the Brylinski conjecture for orbifolds, J. Aust. Math. Soc. 91 (2011), 1-12, arXiv:1001.2435.
-
Brylinski J.-L., A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), 93-114.
-
Cavalcanti G., New aspects of the ddc-lemma, math.DG/0501406.
-
Courter R.C., The dimension of maximal commutative subalgebras of Kn, Duke Math. J. 32 (1965), 225-232.
-
Czarnecki A., Raźny P., Examples of foliations with infinite dimensional special cohomology, Ann. Mat. Pura Appl. 197 (2018), 399-409, arXiv:1705.02216.
-
del Olmo M.A., Rodríguez M.A., Winternitz P., Zassenhaus H., Maximal abelian subalgebras of su(p,q), in XVIIth International Colloquium on Group Theoretical Methods in Physics (Sainte-Adèle, PQ, 1988), World Sci. Publ., Teaneck, NJ, 1989, 401-404.
-
El Kacimi-Alaoui A., Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 73 (1990), 57-106.
-
El Kacimi-Alaoui A., Sergiescu V., Hector G., La cohomologie basique d'un feuilletage riemannien est de dimension finie, Math. Z. 188 (1985), 593-599.
-
Fernández M., Ibáñez R., de León M., On a Brylinski conjecture for compact symplectic manifolds, in Quaternionic structures in mathematics and physics (Trieste, 1994), Int. Sch. Adv. Stud. (SISSA), Trieste, 1998, 119-126.
-
He Z., Odd dimenisonal symplectic manifolds, Ph.D. Thesis, Massachusetts Institute of Technology, 2010, available at http://hdl.handle.net/1721.1/60189.
-
Hussin V., Winternitz P., Zassenhaus H., Maximal abelian subalgebras of complex orthogonal Lie algebras, Linear Algebra Appl. 141 (1990), 183-220.
-
Laffey T.J., The minimal dimension of maximal commutative subalgebras of full matrix algebras, Linear Algebra Appl. 71 (1985), 199-212.
-
Lalonde F., McDuff D., Symplectic structures on fiber bundles, Topology 42 (2003), 309-347, math.SG/0010275.
-
Molino P., Riemannian foliations, Progress in Mathematics, Vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988.
-
Pak H.K., Transversal harmonic theory for transversally symplectic flows, J. Aust. Math. Soc. 84 (2008), 233-245.
-
Patera J., Winternitz P., Zassenhaus H., Maximal abelian subalgebras of real and complex symplectic Lie algebras, J. Math. Phys. 24 (1983), 1973-1985.
-
Raźny P., The Frölicher-type inequalities of foliations, J. Geom. Phys. 114 (2017), 593-606, arXiv:1605.03858.
-
Sugiura M., Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras, J. Math. Soc. Japan 11 (1959), 374-434, Erratum, J. Math. Soc. Japan 23 (1971), 379-383.
-
Thurston W.P., Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468.
-
Tseng L.-S., Yau S.-T., Cohomology and Hodge theory on symplectic manifolds: I, J. Differential Geom. 91 (2012), 383-416, arXiv:0909.5418.
-
Tseng L.-S., Yau S.-T., Cohomology and Hodge theory on symplectic manifolds: II, J. Differential Geom. 91 (2012), 417-443, arXiv:1011.1250.
-
Weinstein A., Fat bundles and symplectic manifolds, Adv. Math. 37 (1980), 239-250.
-
Yan D., Hodge structure on symplectic manifolds, Adv. Math. 120 (1996), 143-154.
|
|