Loading [MathJax]/jax/output/HTML-CSS/jax.js

Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 029, 12 pages      arXiv:1703.08279      https://doi.org/10.3842/SIGMA.2018.029

On the Symplectic Structures in Frame Bundles and the Finite Dimension of Basic Symplectic Cohomologies

Andrzej Czarnecki
Jagiellonian University, Łojasiewicza 6, 30-348 Krakow, Poland

Received February 16, 2018, in final form March 24, 2018; Published online March 30, 2018

Abstract
We present a construction (and classification) of certain invariant 2-forms on the real symplectic group. They are used to define a symplectic form on the quotient by a maximal torus and to ''lift'' a symplectic structure from a symplectic manifold to the bundle of frames. This is a by-product of a failed attempt to prove certain finiteness theorems for basic symplectic cohomologies. In the last part of the paper we include a valid proof.

Key words: symplectic cohomology; basic cohomology.

pdf (363 kb)   tex (20 kb)

References

  1. Angella D., Cohomological aspects in complex non-Kähler geometry, Lecture Notes in Math., Vol. 2095, Springer, Cham, 2014.
  2. Bak L., Czarnecki A., A remark on the Brylinski conjecture for orbifolds, J. Aust. Math. Soc. 91 (2011), 1-12, arXiv:1001.2435.
  3. Brylinski J.-L., A differential complex for Poisson manifolds, J. Differential Geom. 28 (1988), 93-114.
  4. Cavalcanti G., New aspects of the ddc-lemma, math.DG/0501406.
  5. Courter R.C., The dimension of maximal commutative subalgebras of Kn, Duke Math. J. 32 (1965), 225-232.
  6. Czarnecki A., Raźny P., Examples of foliations with infinite dimensional special cohomology, Ann. Mat. Pura Appl. 197 (2018), 399-409, arXiv:1705.02216.
  7. del Olmo M.A., Rodríguez M.A., Winternitz P., Zassenhaus H., Maximal abelian subalgebras of su(p,q), in XVIIth International Colloquium on Group Theoretical Methods in Physics (Sainte-Adèle, PQ, 1988), World Sci. Publ., Teaneck, NJ, 1989, 401-404.
  8. El Kacimi-Alaoui A., Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 73 (1990), 57-106.
  9. El Kacimi-Alaoui A., Sergiescu V., Hector G., La cohomologie basique d'un feuilletage riemannien est de dimension finie, Math. Z. 188 (1985), 593-599.
  10. Fernández M., Ibáñez R., de León M., On a Brylinski conjecture for compact symplectic manifolds, in Quaternionic structures in mathematics and physics (Trieste, 1994), Int. Sch. Adv. Stud. (SISSA), Trieste, 1998, 119-126.
  11. He Z., Odd dimenisonal symplectic manifolds, Ph.D. Thesis, Massachusetts Institute of Technology, 2010, available at http://hdl.handle.net/1721.1/60189.
  12. Hussin V., Winternitz P., Zassenhaus H., Maximal abelian subalgebras of complex orthogonal Lie algebras, Linear Algebra Appl. 141 (1990), 183-220.
  13. Laffey T.J., The minimal dimension of maximal commutative subalgebras of full matrix algebras, Linear Algebra Appl. 71 (1985), 199-212.
  14. Lalonde F., McDuff D., Symplectic structures on fiber bundles, Topology 42 (2003), 309-347, math.SG/0010275.
  15. Molino P., Riemannian foliations, Progress in Mathematics, Vol. 73, Birkhäuser Boston, Inc., Boston, MA, 1988.
  16. Pak H.K., Transversal harmonic theory for transversally symplectic flows, J. Aust. Math. Soc. 84 (2008), 233-245.
  17. Patera J., Winternitz P., Zassenhaus H., Maximal abelian subalgebras of real and complex symplectic Lie algebras, J. Math. Phys. 24 (1983), 1973-1985.
  18. Raźny P., The Frölicher-type inequalities of foliations, J. Geom. Phys. 114 (2017), 593-606, arXiv:1605.03858.
  19. Sugiura M., Conjugate classes of Cartan subalgebras in real semi-simple Lie algebras, J. Math. Soc. Japan 11 (1959), 374-434, Erratum, J. Math. Soc. Japan 23 (1971), 379-383.
  20. Thurston W.P., Some simple examples of symplectic manifolds, Proc. Amer. Math. Soc. 55 (1976), 467-468.
  21. Tseng L.-S., Yau S.-T., Cohomology and Hodge theory on symplectic manifolds: I, J. Differential Geom. 91 (2012), 383-416, arXiv:0909.5418.
  22. Tseng L.-S., Yau S.-T., Cohomology and Hodge theory on symplectic manifolds: II, J. Differential Geom. 91 (2012), 417-443, arXiv:1011.1250.
  23. Weinstein A., Fat bundles and symplectic manifolds, Adv. Math. 37 (1980), 239-250.
  24. Yan D., Hodge structure on symplectic manifolds, Adv. Math. 120 (1996), 143-154.

Previous article  Next article   Contents of Volume 14 (2018)