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Abstract. In this note, we prove the existence of a non-trivial weak solution for
a nonlinear equation involving a p-harmonic operator through a local minimization
theorem, under Dirichlet boundary value conditions. In the case of terms with
a sublinear growth near the origin, we ensure the existence of solutions for small
positive values of the parameter. Moreover, the corresponding solutions have smaller
energies as the parameter goes to zero.
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1. Introduction

Let Ω ⊂ RN (N ≥ 3) be a bounded smooth open domain and let p > 1. In this
work, we shall study the following Dirichlet problem{

∆
(
a(x, ∆u)

)
+ div

(
|∇u|p−2∇u

)
+ |u|p−2u = λf(x, u) + h(u), in Ω,

u = 0,
∂u

∂n
= 0, on ∂Ω,

(1)

where λ ∈ R, n denotes the outward unit normal to ∂Ω, and f : Ω × R → R is a
Carathéodory function such that

(f1) |f(x, t)| ≤ a1 + a2|t|q−1, ∀ (x, t) ∈ Ω× R,

for some non-negative constants a1, a2, where q ∈ (1, p∗) and

p∗ :=


pN

N − 2p
, if p < N

2 ,

+∞, if p ≥ N
2 ,
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a : Ω×R→ R, is a function such that there is A : Ω̄×R→ R, A(x, ξ) is continuous
in Ω̄ × R, with continuous derivative with respect to ξ, a = DξA = A′, with a and
A having the following properties:

(a) a satisfies the growth condition: there is a constant c1 > 0 such that

|a(x, ξ)| ≤ c1(1 + |ξ|p−1), ∀ x ∈ Ω, ξ ∈ R;

(b) a is monotone, i.e., (a(x, ξ1)−a(x, ξ2))(ξ1−ξ2) ≥ 0 holds for a.e. ∀ x ∈ Ω, ξ ∈
R, with equality if and only if ξ1 = ξ2,

(c) A is homogeneous of degree p, i.e., ∀ x ∈ Ω, t ∈ [0,+∞), ξ ∈ R,

A(x, tξ) = tpA(x, ξ);

(d) A satisfies the ellipticity condition: there is a constant c2 > 0 such that

A(x, ξ) ≥ c2|ξ|p, ∀ x ∈ Ω, ξ ∈ R,

and h : R→ R is a Lipschitz continuous function of (p− 1)-order with the Lipschitz
constant 0 < L < 1, that is

|h(x)− h(y)| ≤ L|x− y|p−1

for every x, y ∈ R, and h(0) = 0.
More precisely, employing a critical point result for differentiable functionals, we

obtain some sufficient conditions to guarantee that, the problem (1) has at least one
weak solution (see Theorem 2).

The operator −div(a(x,∇u)), a special case of which is p-Laplacian, arises, for
example, from the expression of the p-Laplacian in curvilinear coordinates. Re-
cently, much progress has been made on the existence of solutions to the elliptic
Dirichlet problems involving a general operator in divergence form, for instance, see
[3, 9, 11, 17, 18, 28]. For example, De Nápoli and Mariani in [9] studied the exis-
tence of solutions to equations of p-Laplacian type. They proved the existence of at
least one solution, and under further assumptions, the existence of infinitely many
solutions. In order to apply mountain pass results, they introduced a notion of uni-
formly convex functional that generalizes the notion of uniformly convex norm. Duc
and Vu in [11] studied the non-uniform case, and extended the result of [9] under
the key hypothesis that the map fulfills a suitable growth condition. The authors
in [28] established the existence and multiplicity of weak solutions of a problem in-
volving a uniformly convex elliptic operator in divergence form. They discussed the
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existence of one nontrivial solution by the mountain pass lemma, when the nonlin-
earity has a (p − 1)-superlinear growth at infinity, and two nontrivial solutions by
minimization and mountain pass when the nonlinear term has a (p − 1)-sublinear
growth at infinity. Molica Bisci and Repovš in [17], exploiting variational methods,
investigated the existence of three weak solutions for a class of elliptic equations
involving a general operator in divergence form and with Dirichlet boundary con-
dition. They are analyzed several special cases. In conclusion, for completeness,
they presented a concrete example of an application by finding the existence of
three nontrivial weak solutions for an uniformly elliptic second-order problem on a
bounded Euclidean domain, while in [18] they studied a nonlinear parametric Neu-
mann problem driven by a nonhomogeneous quasi-linear elliptic differential operator
div(a(x,∇u)), in which the reaction term is a nonlinearity function f which exhibits
(p− 1)-subcritical growth. By using variational methods, they proved a multiplicity
result on the existence of weak solutions for such problems. Also, in [3] existence
results and energy estimates of weak solutions to the following equation involving a
p-harmonic operator {

∆
(
a(x,∆u)

)
= λf(x, u), in Ω,

u = 0,
∂u

∂n
= 0, on ∂Ω,

(2)

where the function f : Ω×R→ R is a Carathéodory function satisfied the condition
(f1), by using Ricceri’s variational principle [22], in order to prove that the prob-
lem (2) admits at least one non-trivial weak solution for a open interval involving
the parameter λ, were established. In [8], Colasuonno et al. studied different and
very general classes of elliptic operators in divergence form looking at the existence
of multiple weak solutions. Their results represent a nice improvement, in several
directions, of the results obtained by Kristály et al. in [15], in which the existence
of three weak solutions to the following problem involving elliptic operators in di-
vergence form {

−div
(
a(x,∇u)

)
= f(x, u), in Ω,

u = 0, on ∂Ω,
(3)

where Ω ⊆ RN is a bounded domain, N ≥ 2, while the nonlinearities a : Ω× RN →
RN and f : Ω × R → R fulfill certain structural conditions, while the nonlinearity
has a (p− 1)−sublinear growth at infinity, was investigated.

The existence of multiple solutions for this type of nonlinear differential equations
was studied in [10]. Many of these results are based on some three critical points
theorems of Ricceri and Bonanno established in [5, 23]. In [21], Ricceri developed
one of his results, [23, Theorem 1] by means of an abstract result, [24, Theorem 4].
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Yang et al. in [26] studied the following singular p-Laplacian type equation{
−div

(
|x|−βa(x,∇u)

)
= λf(x, u), in Ω,

u = 0, on ∂Ω,

where 0 ≤ β < N − p, Ω is a smooth bounded domain in RN containing the origin,
f satisfies some growth and singularity conditions. Under some mild assumptions
on the function a, applying the three points theorem due to Bonanno [5], authors
established the existence of at least three distinct weak solutions to the above prob-
lem if f admits some hypotheses on the behavior at u = 0 or perturbation property.
Using the minimax methods in critical point theory, Suo and Tang in [25] studied
the multiplicity of solutions for degenerate semi-linear elliptic equation of the form{

−div
(
a(x)∇u

)
= λu+ f(x, u) + h(x), in Ω,

u = 0, on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, the function
a is a nonnegative measurable weight on Ω, λ ∈ R, h ∈ L2(Ω), and f : Ω × R → R
is a Carathéodory function and satisfies the following assumption:

(e) There exist constants c > 0 and q ∈ (1, 2) such that

|f(x, t)| ≤ c(1 + |t|q−1),

for all (x, t) ∈ Ω× R.

In [7] the authors in the framework of variable exponent spaces spaces, using
variational methods discussed the existence of solutions for the nonlinear elliptic
problem involving a p(.)-Laplace-type operator{

−div
(
a(x,∇u)

)
+ |∇u(x)|p(x)−2u = λf(x, u), in Ω,

u(x) = constant, on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 2) , the functions a : Ω× RN → RN and
f : Ω× R→ R are fulfilling appropriate conditions.

In the present paper, employing a smooth version of [6, Theorem 2.1] which is a
more precise version of Ricceri’s Variational Principle [22], we attempt the existence
of at least one nontrivial weak solution for the problem (1) for small values of the
parameter and requiring an additional asymptotical behaviour of the potential at
zero, if f(x, 0) = 0 for a.e. x ∈ Ω. In the case of terms with a sublinear growth
near the origin, we ensure the existence of solutions for small positive values of
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the parameter. Moreover, the corresponding solutions have smaller energies as the
parameter goes to zero, see Theorem 2. We list some consequences of the results.
We illustrate the results by presenting convenient examples. Finally we present
some consequences of the results, examples and a detailed discussion on systems
with p = 2 and particular cases of the functions a and f are given.

The outline of the paper is organized as follows: In Section 2 we shall recall our
main tool (Theorem 1) and some properties of variable exponent spaces and basic
notations which we need in the proofs. Whereas, in Section 3 we formulate the main
result and prove it, in order to discuss the existence of one weak solution for the
problem (1). We also list some consequences of the main results, and present some
examples to illustrate the results. Finally, in Section 4 we give an application of the
main result for particular case of the function a and nonlinear term f in the case
p = 2.

2. Preliminaries

Our main tool is a smooth version of Theorem 2.1 of [6] which is a more precise
version of Ricceri’s Variational Principle [22] that we recall here.

Theorem 1. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two
Gâteaux differentiable functionals such that Φ is strongly continuous, sequentially
weakly lower semicontinuous and coercive in X and Ψ is sequentially weakly upper
semicontinuous in X. Let Iλ be the functional defined as Iλ := Φ− λΨ, λ ∈ R, and
for any r > inf

X
Φ let ϕ be the function defined as

ϕ(r) := inf
u∈Φ−1

(
(−∞,r)

)
sup

v∈Φ−1
(

(−∞,r)
)Ψ(v)−Ψ(u)

r − Φ(u)
. (4)

Then, for any r > inf
X

Φ and any λ ∈ (0, 1/ϕ(r)), the restriction of the functional

Iλ to Φ−1
(
(−∞, r)

)
admits a global minimum, which is a critical point (precisely a

local minimum) of Iλ in X.

We refer the interested reader to the papers [4, 12, 13, 16] in which Theorem 1
has been successfully employed to the existence of at least one non-trivial solution
for boundary value problems.

Now, let us denote by X the Sobolev space W 2,p(Ω) ∩W 1,p
0 (Ω), endowed with

the norm

‖u‖ :=

(∫
Ω
|∆u(x)|p dx+

∫
Ω
|∇u(x)|p dx+

∫
Ω
|u(x)|pdx

)1/p

.
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We recall that (see [27, page 1026]) if p > N/2, the embedding X ↪→ C0(Ω̄) is
compact, and if p ≤ N/2, the embedding X ↪→ Lq(Ω) for all q ∈ [1, p∗) is compact.

Hence, for the case where p > N/2, there exists k > 0 such that

‖u‖∞ ≤ k‖u‖, ∀ u ∈ X,

and for the case where p ≤ N/2, there exists Sq > 0 such that

‖u‖Lq(Ω) ≤ Sq‖u‖, ∀ u ∈ X.

We say that a function u is a weak solution of problem (1), if u ∈ X and satisfies∫
Ω

[
a(x, ∆u)∆v + |∇u|p−2∇u∇v + |u|p−2uv − λ f(x, u)v − h(u)v

]
dx = 0,

for every v ∈ X.

3. Main results

In this section, we state and prove the main results of this paper.

Theorem 2. Let f : Ω × R → R be a Carathéodory function such that condition
(f1) holds and

L <
pc3

Spp
, (5)

where c3 = min{1
p , c2}. In addition, if f(x, 0) = 0 for a.e. x ∈ Ω, assume also that

(f2) there are a non-empty open set D ⊆ Ω and a set B ⊆ D of positive Lebesgue
measure such that

lim sup
t→0+

ess inf
x∈B

F (x, t)

tp
= +∞,

and

lim inf
t→0+

ess inf
x∈D

F (x, t)

tp
> −∞,

where

F (x, t) :=

∫ t

0
f(x, ξ) dξ, ∀ (x, t) ∈ Ω× R.

Further, assume that a and A are continuous functions and satisfy conditions (a)-
(d).
Then, there exists λ? > 0, such that, for any λ ∈ (0, λ?) problem (1) admits at
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least one non-trivial weak solution uλ ∈ X. Also, λ? = +∞, provided q ∈ (1, p).
Moreover,

lim
λ→0+

‖uλ‖ = 0,

and the function

λ 7→
∫

Ω

(
A(x, ∆uλ) +

1

p
|∇uλ|p +

1

p
|uλ|p

)
dx− λ

∫
Ω
F (x, uλ) dx−

∫
Ω
H(uλ) dx

is negative and strictly decreasing in (0, λ?).

Proof. Our aim is to apply Theorem 1 to problem (1). To this end, let the functionals
Φ,Ψ : X → R be defined by

Φ(u) :=

∫
Ω
A(x, ∆u(x)) dx+

1

p

∫
Ω
|∇u(x)|p dx+

1

p

∫
Ω
|u(x)|p dx−

∫
Ω
H(u(x)) dx,

where H(t) :=
∫ t

0 h(s) ds, for every t ∈ R, and

Ψ(u) :=

∫
Ω
F (x, u(x)) dx,

for every u ∈ X, and set Iλ := Φ − λΨ. Clearly, Φ and Ψ are well defined and
continuously Gâteaux differentiable functionals whose Gâteaux derivatives at the
point u ∈ X are given by

Φ′(u)(v) =

∫
Ω

[
a(x, ∆u)∆v + |∇u|p−2∇u∇v + |u|p−2uv − h(u)v

]
dx,

Ψ′(u)(v) =

∫
Ω
f(x, u(x))v(x) dx,

for every v ∈ X (see [10, Lemma 2.2]). In the same way as in the proof [7, Lemma
5] we observe Φ is sequentially weakly lower semicontinuous. Moreover, Ψ is sequen-
tially weakly (upper) continuous. By condition (d), for all u ∈ X, we have

Φ(u) ≥
∫

Ω

[
c2|∆u(x)|p +

1

p
|∇u(x)|p +

1

p
|u(x)|p − |H(u(x))|

]
dx

≥ c3‖u‖p −
∫

Ω

(∫ u(x)

0
|h(s)| ds

)
dx

≥ c3‖u‖p −
∫

Ω

(
L

∫ u(x)

0
|s|p−1 ds

)
dx

≥ c3‖u‖p −
L

p

∫
Ω
|u(x)|p dx

≥ (c3 −
LSpp
p

)‖u‖p. (6)
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So, from (5) and (6), we have that Φ is coercive in X and infu∈X Φ(u) = 0.
Now, let r > 0. It is easy to see that ϕ(r) ≥ 0 for any r > 0, where ϕ is defined by
(4). Then, by Theorem 1,

for any r > 0 and any λ ∈
(

0, 1/ϕ(r)
)

the restriction

of Iλ to Φ−1
(
(−∞, r)

)
admits a global minimum uλ,r, (7)

which is a critical point (namely a local minimum) of Iλ in X. Let λ? be defined as
follows

λ? := sup
r>0

1

ϕ(r)
.

Note that λ? > 0, since ϕ(r) ≥ 0 for any r > 0. Now, fix λ̄ ∈ (0, λ?). It is easy to
see that

there exists r̄λ̄ > 0 such that λ̄ ≤ 1/ϕ(r̄λ̄). (8)

Then, by (7) applied with r = r̄λ̄, we have that for any λ such that

0 < λ < λ̄ ≤ 1/ϕ(r̄λ̄),

the function uλ := uλ,r̄λ̄ is a global minimum of the functional Iλ restricted to
Φ−1

(
(−∞, r̄λ̄)

)
, i.e.,

Iλ(uλ) ≤ Iλ(u) for any u ∈ X such that Φ(u) < r̄λ̄ (9)

and
Φ(uλ) < r̄λ̄, (10)

and also uλ is a critical point of Iλ in X and so it is a weak solution of problem (1).
Now, we show that λ? = +∞, provided q ∈ (1, p). To this end, by (f1), one has

|F (x, t)| ≤ a1|t|+
a2

q
|t|q, (11)

for any (x, t) ∈ Ω× R. Also, by (6), for any u ∈ X such that Φ(u) < r, with r > 0,
we have

‖u‖p < r

c4
,

where c4 := c3 − LSpp
p > 0. So, we observe that

Φ−1(]−∞, r[) = {u ∈ X | Φ(u) < r} ⊆ {u ∈ X | ‖u‖p < r

c4
}. (12)
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Now, we discuss two cases.
Case 1: If p < N/2, from (11) and (12), for any u ∈ X such that Φ(u) < r, we
obtain

Ψ(u) =

∫
Ω
F (x, u(x)) dx

≤ a1‖u‖L1(Ω) +
a2

q
‖u‖qLq(Ω)

≤ a1S1‖u‖+
a2Sq
q
‖u‖q

< a1S1

( r
c4

)1/p
+
a2S

q
q

q

( r
c4

)q/p
,

so that

sup
u∈Φ−1

(
(−∞,r)

)Ψ(u) ≤ a1S1

c
1/p
4

r1/p +
a2S

q
q

qc
q/p
4

rq/p

for any r > 0. Now, by definition of ϕ, for any r > 0 we have

ϕ(r) ≤
sup

u∈Φ−1
(

(−∞,r)
)Ψ(u)

r
≤ a1S1

c
1/p
4

r1/p−1 +
a2S

q
q

qc
q/p
4

rq/p−1,

since Φ(0) = Ψ(0) = 0. Namely,

1

ϕ(r)
≥ qc

q/p
4

a1S1qc
(q−1)/p
4 r(1−p)/p + a2S

q
qr(q−p)/p

,

so that

λ? = sup
r>0

1

ϕ(r)
≥ sup

r>0

qc
q/p
4

a1S1qc
(q−1)/p
4 r(1−p)/p + a2S

q
qr(q−p)/p

= +∞,

provided q ∈ (1, p). Hence, λ? = +∞ if q ∈ (1, p).
Case 2: If p ≥ N/2, from (11), for any u ∈ X such that Φ(u) < r, we obtain

Ψ(u) =

∫
Ω
F (x, u(x)) dx

≤ meas(Ω)

(
a1‖u‖∞ +

a2

q
‖u‖q∞

)
≤ meas(Ω)

(
a1k‖u‖+

a2k
q

q
‖u‖q

)
< meas(Ω)

(
a1k
( r
c4

)1/p
+
a2k

q

q

( r
c4

)q/p)
,
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so that

sup
u∈Φ−1

(
(−∞,r)

)Ψ(u) ≤ meas(Ω)

(
a1k

c
1/p
4

r1/p +
a2k

q

qc
q/p
4

rq/p

)

for any r > 0. Now, by definition of ϕ, for any r > 0 we have

ϕ(r) ≤
sup

u∈Φ−1
(

(−∞,r)
)Ψ(u)

r
≤ meas(Ω)

(
a1k

c
1/p
4

r1/p−1 +
a2k

q

qc
q/p
4

rq/p−1

)
.

Namely,

λ? = sup
r>0

1

ϕ(r)
≥ sup

r>0

qc
q/p
4

meas(Ω)
(
a1kqc

(q−1)/p
4 r(1−p)/p + a2kqr(q−p)/p

) = +∞,

provided q ∈ (1, p). Hence, we obtain again λ? = +∞ if q ∈ (1, p). Now, we have to
show that for any λ ∈ (0, λ?) the solution uλ is not trivial. If f(·, 0) 6= 0, we have
uλ 6≡ 0 in X, since the trivial function does not solve problem (1). Let us consider
the case when f(·, 0) = 0 and let us fix λ̄ ∈ (0, λ?) and λ ∈ (0, λ̄). Finally, let uλ be
as in (9) and (10). We will prove that uλ 6≡ 0 in X. To this end, let us show that

lim sup
‖u‖→0+

Ψ(u)

Φ(u)
= +∞. (13)

For this, first note that, by (c), we have

A(x, tξ) = tpA(x, ξ),

for all x ∈ Ω, t ∈ [0,+∞) and ξ ∈ R. Thus, for all t ∈ [0, 1] and u ∈ X\{0}, we have

0 < Φ(t
1
pu) ≤ |Φ(t

1
pu)|

≤
∫

Ω
|A(x,∆(t

1
pu(x)))| dx+

1

p
t

∫
Ω
|∇u(x)|p dx

+
1

p
t

∫
Ω
|u(x)|p dx+

∫
Ω

(∫ t
1
p u(x)

0
|h(s)| ds

)
dx

≤ t

(∫
Ω

[
A(x,∆u(x)) +

1

p
|∇u(x)|p +

1

p
(1 + L) |u(x)|p

]
dx

)
.(14)

Due to (f2), we can fix a sequence {ξn} ⊂ R+ converging to zero and a constant
κ ∈ R such that

lim
n→∞

ess inf
x∈B

F (x, ξn)

ξpn
= +∞,
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and
ess inf

x∈D
F (x, ξn) ≥ κξpn,

for n sufficiently large. Now, fix a set C ⊂ B of positive measure and a function
v ∈ X such that:

(i) v(x) ∈ [0, 1], for every x ∈ Ω̄;

(ii) v(x) = 1, for every x ∈ C;

(iii) v(x) = 0, for every x ∈ Ω \D.

Hence, fix M > 0 and consider a real positive number η with

M <

ηmeas(C) + κ

∫
D\C

v(x) dx∫
ΩA(x,∆v(x)) dx+ 1

p

∫
Ω |∇v(x)|p dx+ 1

p(1 + L)
∫

Ω |v(x)|p dx
.

Then, there is ν ∈ N such that ξn < 1 and

ess inf
x∈B

F (x, ξn) ≥ ηξpn,

for every n > ν. Finally, let wn := ξ
1
p
n v for every n ∈ N. It is easy to see that

wn ∈ X for any n ∈ N. Now, for every n > ν, bearing in mind the properties of the
function v (0 ≤ wn(x) < σ for n sufficiently large and some σ > 0) and considering

in fact that ξ
1
p
n ∈ [0, 1] for every n ∈ N from (14), one has

Ψ(wn)

Φ(wn)
=

∫
C
F (x, ξ

1
p
n ) dx+

∫
D\C

F (x, ξ
1
p
n v(x)) dx

Φ(ξ
1
p
n v)

≥

∫
C
ηξndx+

∫
D\C

κξnv
p(x) dx

Φ(ξ
1
p
n v)

≥
ηξnmeas(C) + κξn

∫
D\C

vp(x) dx

ξn

(∫
Ω A(x,∆v(x)) dx+ 1

p

∫
Ω |∇v(x)|p dx+ 1

p(1 + L)
∫

Ω |v(x)|p dx
)

≥
ηmeas(C) + κ

∫
D\C

(v(x))p dx∫
Ω A(x,∆v(x)) dx+ 1

p

∫
Ω |∇v(x)|p dx+ 1

p(1 + L)
∫

Ω |v(x)|p dx
> M.
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Since M could be arbitrarily large, it follows that

lim
n→∞

Ψ(wn)

Φ(wn)
= +∞,

from which (13) clearly follows. Hence, there exists a sequence {wn} ⊂ X strongly
converging to zero, such that, for every n sufficiently large, wn ∈ Φ−1

(
(−∞, r̄λ̄)

)
,

and
Iλ(wn) := Φ(wn)− λΨ(wn) < 0. (15)

Since uλ is a global minimum of the restriction of Iλ to Φ−1
(
(−∞, r̄λ̄)

)
(see (9)), by

(15) we conclude that
Iλ(uλ) ≤ Iλ(wn) < 0 = Iλ(0), (16)

so that uλ 6≡ 0 in X. Thus, uλ is a nontrivial weak solution of problem (1). Moreover,
from (16) we can easily see that the map

(0, λ?) 3 λ 7→ Iλ(uλ) is negative. (17)

Now, we claim that
lim
λ→0+

‖uλ‖ = 0.

Indeed, let again λ̄ ∈ (0, λ?) and λ ∈ (0, λ̄). Bearing in mind (6) and the fact that
Φ(uλ) < r̄λ̄ for any λ ∈ (0, λ̄) (see (10)), one has that

c4‖uλ‖p ≤ Φ(uλ) < r̄λ̄,

that is,

‖uλ‖p <
r̄λ̄
c4
.

Again, we consider two cases.
Case 1: If p < N/2, we have∣∣∣∣∫

Ω
f(x, uλ(x))uλ(x) dx

∣∣∣∣ ≤ a1‖uλ‖L1(Ω) + a2‖uλ‖qLq(Ω)

≤ a1S1‖uλ‖+ a2S
q
q‖uλ‖q (18)

< a1S1

( r̄λ̄
c4

)1/p
+ a2S

q
q

( r̄λ̄
c4

)q/p
=: Mr̄λ̄ ,

for every λ ∈ (0, λ̄).
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Case 2: If p ≥ N/2, we have∣∣∣∣∫
Ω
f(x, uλ(x))uλ(x) dx

∣∣∣∣ ≤ meas(Ω) (a1‖uλ‖∞ + a2‖uλ‖q∞)

≤ meas(Ω) (a1k‖uλ‖+ a2k
q‖uλ‖q) (19)

< meas(Ω)

(
a1k
( r̄λ̄
c4

)1/p
+ a2k

q
( r̄λ̄
c4

)q/p)
=: Nr̄λ̄ ,

for every λ ∈ (0, λ̄). Since uλ is a critical point of Iλ, then I ′λ(uλ)(v) = 0, for any
v ∈ X and every λ ∈ (0, λ̄). In particular, I ′λ(uλ)(uλ) = 0, that is

Φ′(uλ)(uλ) = λ

∫
Ω
f(x, uλ(x))uλ(x) dx, (20)

for every λ ∈ (0, λ̄). On the other hand, since A is homogeneous, we have

ηa(x, tη) =
∂

∂t

(
A(x, tη)

)
=

∂

∂t

(
tpA(x, η)

)
= ptp−1A(x, η).

So, η a(x, η) = pA(x, η) ≥ A(x, η), for every x ∈ Ω and each η ∈ R. Then,

a(x, ξ) ξ ≥ A(x, ξ) ≥ c2|ξ|p, (21)

for all ξ ∈ R. Then, from (20) and (21), it follows that

0 ≤ c2‖uλ‖p ≤ Φ′(uλ)(uλ) = λ

∫
Ω
f(x, uλ(x))uλ(x) dx,

for any λ ∈ (0, λ̄). Taking into account (18) or (19) and letting λ→ 0+, we get

lim
λ→0+

‖uλ‖ = 0,

as claimed. Finally, we show that the map

λ 7→ Iλ(uλ) is strictly decreasing in (0, λ?).

Indeed, we observe that for any u ∈ X, one has

Iλ(u) = λ

(
Φ(u)

λ
−Ψ(u)

)
. (22)
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Now, let us fix 0 < λ1 < λ2 < λ̄ < λ? and let uλi be the global minimum of the
functional Iλi restricted to Φ−1

(
(−∞, r̄λ̄)

)
for i = 1, 2. Also, let

mλi :=

(
Φ(uλi)

λi
−Ψ(uλi)

)
= inf

v∈Φ−1
(

(−∞,r̄λ̄)
)(Φ(v)

λi
−Ψ(v)

)
,

for every i = 1, 2. Clearly, (17) together (22) and the positivity of λ imply that

mλi < 0, for i = 1, 2. (23)

Moreover,
mλ2 ≤ mλ1 , (24)

thanks to 0 < λ1 < λ2. Then, by (22)-(24) and again by the fact that 0 < λ1 < λ2,
we get that

Iλ2(uλ2) = λ2mλ2 ≤ λ2mλ1 < λ1mλ1 = Iλ1(uλ1),

so that the map λ 7→ Iλ(uλ) is strictly decreasing in (0, λ̄). The arbitrariness of
λ̄ < λ? shows that λ 7→ Iλ(uλ) is strictly decreasing in (0, λ?). Thus, the proof is
complete.

Now we give some remarks on our results.

Remark 1. In Theorem 2, employing Ricceri’s variational principle we searched for
a critical point of the functional Iλ naturally associated with the the problem (1).
We note that, in general, the functional Iλ can be unbounded from the below in X.
Indeed, for example, when f(x, t) = 1 + |t|ζ−2t for (x, t) ∈ Ω×R with ζ > p > 2, for
any fixed u ∈ X \ {0} and τ ∈ R, we obtain

Iλ(τu) = Φ(τu)− λ
∫

Ω
F (x, τu) dx

≤ τp
(∫

Ω

[
A(x,∆u) +

1

p
|∇u|p +

1

p
(1 + L)|u|p

]
dx

)
− λτ‖u‖L1 − λ

τ ζ

ζ
‖u‖ζ

Lζ

≤ (1 +
L

p
)τp‖u‖p − λτ‖u‖L1 − λ

τ ζ

ζ
‖u‖ζ

Lζ

→ −∞

as τ → +∞. Hence, using direct minimization is not possible to find critical points
of the functional Iλ.
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Remark 2. If function f is non-negative then the solution ensured in Theorem 2
is non-negative. Indeed, let u∗ be a non-trivial weak solution of the problem (1),
then u∗ is non-negative. Arguing by a contradiction, suppose that the set A = {x ∈
Ω ; u∗(x) < 0} is non-empty and of positive measure. Put v̄(x) = min{u∗(x), 0}.
Using this fact that u∗ also is a solution of (1), so for every v̄ ∈ X one has∫

Ω

[
a(x,∆u∗)∆v̄ + |∇u∗|p−2∇u∗∇v̄ + |u∗|p−2u∗v̄ − h(u∗)v̄

]
dx

− λ
∫

Ω
f(x, u∗)v̄ dx = 0

and by choosing v̄ = u∗ and since f is non-negative, we have

0 ≤
(
min{pc2, 1} − LSpp

)
‖u∗‖pA∫

A
[a(x,∆u∗)∆u∗ + |∇u∗|p + |u∗|p − h(u∗)u∗] dx

= λ

∫
A
f(x, u∗(x))u∗(x) dx ≤ 0

since L < pc3
Spp
, where c3 = min{1

p , c2}, we have ‖u∗‖pA ≤ 0 which contradicts fact

that u∗ is a non-trivial solution. Hence, u∗ is positive.

Remark 3. It is worth to mention that Theorem 2 is a bifurcation result in the
sense that the pair (0, 0) belongs to the closure of the set

{(uλ, λ) ∈ X × (0,+∞) : uλ is a non-trivial weak solution of (1)}

in X × R. Indeed, by Theorem 2 we have that

‖uλ‖ → 0 as λ→ 0.

Hence, there exist two sequences {uj} in X and {λj} in R+ (here uj = uλj ) such
that λj → 0+ and ‖uj‖ → 0, as j → +∞. Moreover, we emphasis that due to the
fact that the map

(0, λ∗) 3 λ 7→ Iλ(uλ)

is strictly decreasing, for every λ1, λ2 ∈ (0, λ∗), with λ1 6= λ2, the solutions uλ1 and
uλ2 given by Theorem 2 are different.

Several special cases of Theorem 2 read as follows.

Corollary 3. Let g : Ω̄→ R be a function that g ∈ L∞(Ω̄) with

ess inf
x∈Ω̄

g(x) > 0.
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Further, let f : R→ R be a continuous function such that

|f(t)| ≤ c0|t|q−1, (25)

for every t ∈ R and some positive constant c0, where q ∈ (1, p?). In addition, assume
that

lim
t→0+

∫ t
0 f(s) ds

tp
= +∞,

and suppose also that the condition (5) holds, and a, A are continuous functions
and satisfy the conditions (a) − (d). Then, there exists λ? > 0, such that, for any
λ ∈ (0, λ?) problem{

∆
(
a(x, ∆u)

)
+ div

(
|∇u|p−2∇u

)
+ |u|p−2u = λ g(x)f(u) + h(u), in Ω,

u = 0,
∂u

∂n
= 0, on ∂Ω,

admits at least one non-trivial weak solution uλ ∈ X. Also, λ? = +∞, provided
q ∈ (1, p). Moreover,

lim
λ→0+

‖uλ‖ = 0

and the function

λ 7−→
∫

Ω

[
A(x,∆uλ) +

1

p
|∇uλ|p +

1

p
|uλ|p −H(uλ(x)− λ g(x)

(∫ uλ(x)

0
f(s) ds

)]
dx

is negative and strictly decreasing in (0, λ?).

Proof. It is enough for the proof to put

f0(x, t) = g(x)f(t)

for every (x, t) ∈ Ω × R. Clearly, all of assumptions of Theorem 2 are satisfying.
Thus, by using Theorem 2 for the function f0 the proof is complete.

Corollary 4. Let g : Ω̄→ R be a function that g ∈ L∞(Ω̄) with

ess inf
x∈Ω̄

g(x) > 0.

Further, let f : R→ R be a continuous function such that

lim
|t|→+∞

f(t)

|t|q−1
= 0, (26)
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where q ∈ (1, p?) and the condition (5) holds. In addition, if f(0) = 0, assume that

lim
t→0+

∫ t
0 f(s) ds

tp
= +∞.

Then, there exists λ? > 0, such that, for any λ ∈ (0, λ?) the following p-biharmonic
problem{

∆(|∆u|p−2∆u) + div(|∇u|p−2∇u) + |u|p−2u = λ g(x)f(u) + h(u), in Ω,

u = 0,
∂u

∂n
= 0, on ∂Ω,

admits at least one non-trivial weak solution uλ ∈ X. Also, λ? = +∞, provided
q ∈ (1, p). Moreover,

lim
λ→0+

∫
Ω

(
|∆uλ(x)|p + |∇uλ(x)|p + |uλ(x)|p

)
dx = 0

and the function

λ 7−→ 1

p

∫
Ω

(
|∆uλ(x)|p + |∇uλ(x)|p + |uλ(x)|p

)
dx

−
∫

Ω

(∫ uλ(x)

0
h(ξ) dξ

)
dx− λ

∫
Ω
g(x)

(∫ uλ(x)

0
f(s) ds

)
dx

is negative and strictly decreasing in (0, λ?).

Proof. It is enough to put
a(x, ξ) := ξ |ξ|p−2

for every (x, ξ) ∈ Ω × R. From (26), the condition (25) is satisfying. So, the
conclusion follows by applying Corollary 3.

We end this section by giving the following examples to illustrate our results.

Example 1. Consider the following problem{
∆
(
a(x, ∆u)

)
+ div

(
|∇u|p−2∇u

)
+ |u|p−2u,= λf(x, u) + µ0 tan−1(u), in Ω,

u = 0,
∂u

∂n
= 0, on ∂Ω.

(27)
Now, by applying Theorem 2 with choosing µ0 ≤ p c3

Spp
and

f(x, t) := α(x) |t|r−pt+ σ(x) |t|s−pt, for all (x, t) ∈ Ω× R,
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where r ∈ (1, p−2), 2p < s with s−p+2 < p∗ and α, β : Ω→ R are two continuous
functions with α(x) negative, the problem (27) has at least one non-trivial weak
solution for any λ ∈ (0, λ∗), for some λ∗ > 0. Note that

limt→0+

∫ t
0 f(x,ξ) dξ

tp = limt→0+
α(x)
r−p+2 t

r−2p+2 + limt→0+
σ(x)
s−p+2 t

s−2p+2

= limt→0+
α(x)
r−p+2 t

r−2p+2.

If r ∈ (1, p− 2), then r − p+ 2 < 0 and r − 2p+ 2 < 0, hence

lim
t→0+

α(x)

r − p+ 2
tr−2p+2 = +∞.

Also

lim
|t|→+∞

f(t)

|t|q−1
= 0,

if s− p+ 2 < q < p∗.

Example 2. Now, we consider the following problem{
∆
(
a(x, ∆u)

)
+ div

(
|∇u|p−2∇u

)
+ |u|p−2u = λ f(u) + h(u), in Ω,

u = 0,
∂u

∂n
= 0, on ∂Ω,

(28)

where f(t) = qtq−1 and h(t) = ν sin(t) for every t ∈ R where ν < min{1, p c2} and
2 < q < p. By the definition of the function f we obtain that F (t) = tq. Clearly, we
have |f(t)| ≤ q|t|q−1, for all t ∈ R, and since q < p

lim
t→0+

F (t)

tp
= lim

t→0+

tq

tp
= +∞.

Then all conditions in Corollary 3 are satisfied. So, conclusions of Corollary 3 are
applicable for the problem 28.

Example 3. Let p > 2 and 2 < q < p < p∗ = pN
N−2p . Put

f(t) =

{
0 t ≤ 0
sin t t > 0.

Thus, one has

f(0) = 0 and lim
|t|→+∞

f(t)

|t|q−1
= 0.

On the other hand, since p > 2 (or p− 1 > 1), we obtain that

lim
t→0+

∫ t
0 f(s) ds

tp
= lim

t→0+

sin t

ptp−1
= +∞.
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So, all the assumptions Corollary 4 is satisfying. Then, Corollary 4 is applicable for
the problem ∆(|∆u|p−2∆u) + div(|∇u|p−2∇u) + |u|p−2u = λ f(u) + µ1 tan−1(

u

3
), in Ω,

u = 0,
∂u

∂n
= 0, on ∂Ω,

where µ1 < 3. Recall that for a(x, ξ) = |ξ|p−2, we have A(x, ξ) = |ξ|p
p , for all (x, ξ) ∈

Ω× R and c3 = 1
p .

4. A particular case of the problem

In this section, let p = 2 and the function a : Ω× R→ R be defined as

a(x, ξ) := |x|−2α ξ

and

A(x, ξ) :=

∫ ξ

0
a(x, s) ds,

for every (x, ξ) ∈ Ω × R, where 0 ≤ α < N−2
2 . We consider the following nonlinear

system: ∆(|x|−2α∆u(x)) + div
(
∇u(x)

)
+ u(x) = λ|x|−2βf(u(x)) + h(u(x)), in Ω,

u =
∂u

∂n
= 0, on ∂Ω,

(29)
where λ is a real positive parameter and Ω is a bounded domain similar to Section
1, and α, β are real numbers such that

0 ≤ α < N − 2

2
and α ≤ β < α+ 1,

and f : R → R is a continuous function satisfying the following subcritical growth
condition

|f(t)| ≤ a1 + a2|t|r−1 for all t ∈ R,
for some nonnegative constants a1, a2 and r ∈]1, r?[, where

r? := 2 min{ (N − 2β)

N − 2(α+ 1)
,

N

N − 2
},

and h : R → R is a Lipschitz continuous function with the Lipschitzian constant
0 < L < 1, that is

|h(t1)− h(t2)| ≤ L|t1 − t2|
for every t1, t2 ∈ R and h(0) = 0. Since Ω is bounded, we have
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(a) |a(x, ξ)| = |x|−2α |ξ| ≤ c1(1 + |ξ|), ∀ (x, ξ) ∈ Ω×R, (If Ω does not contain
0)

for some positive constant c1. Now, put g(s) := A(x, s) for each x ∈ Ω and
s ∈ R. Then, we obtain that the function g is homogeneous of degree 2.

(c) there is a constant c2 > 0 such that

A(x, ξ) =

∫ ξ

0
a(x, s) ds =

|x|−2α

2
ξ2

≥

[
supz∈Ω

(
d(z, 0)

)]−2α

2
ξ2

= c2|ξ|2.

Also a is monotone. Thus, all the conditions (a)− (d) in the Section 1 are satisfied
for the function a.

With the previous notations, the main result of this section reads as follows:

Theorem 5. Let f : R→ R be a continuous function satisfying the following growth
condition

|f(t)| ≤ a3 + a4|t|r−1 for all t ∈ R (30)

for some nonnegative constants a3, a4 and r ∈]1, r?[, where r? has been given above,
α and β are real numbers such that 0 ≤ α < N−2

2 and α ≤ β < α+ 1. In addition,
if f(0) = 0, assume also that

lim sup
t→0+

∫ t
0 f(s) ds

t2
= +∞ and lim inf

t→0+

∫ t
0 f(s) ds

t2
> −∞. (31)

Moreover, suppose that

L <
2c3

S2
2

, (32)

where c3 = min{1
2 , c2} and c2 =

[
supz∈Ω

(
d(z,0)

)]−2α

2 . Then, there exists λ? > 0,
such that, for any λ ∈ (0, λ?) the problem (29) admits at least one non-trivial weak
solution uλ ∈W 2,2(Ω) ∩W 1,2

0 (Ω). Also, λ? = +∞, provided q ∈ (1, 2). Moreover,

lim
λ→0+

∫
Ω

(
|∆uλ(x)|2 + |∇uλ(x)|2 + |uλ(x)|2

)
dx = 0,
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and the function

λ 7→ 1
2

∫
Ω

(
|x|−2α|∆uλ(x)|2 + |∇uλ(x)|2 + |uλ(x)|2

)
dx

−
∫

Ω

(∫ uλ(x)

0
h(ξ) dξ

)
dx− λ

∫
Ω
|x|−2α

(∫ uλ(x)

0
f(ξ) dξ

)
dx

is negative and strictly decreasing in (0, λ?).

Proof. By applying Theorem 2, put f(x, t) := |x|−2βf(t) and a(x, t) := |x|−2αt, for
each x ∈ Ω and t ∈ R. So, f(x, 0) = |x|−2βf(0) = 0. Clearly, r? ≤ 2N

N−2 = pN
N−2 ≤ p

?

for p = 2. Therefore, from condition (30), assumption (f1) holds. Condition (31)
shows that (f2) of Theorem 2 holds. From what we said before this Theorem for the
function a : Ω× R→ R defined as a(x, t) := |x|−2α t and from (32), we observe
that all of assumptions of Theorem 2 are satisfying. Thus, Theorem 2 ensures the
conclusion.

We give here the following special case of our result in this section; see also
Remark 6.

Theorem 6. Let 0 ≤ β < 1 and f : R → R be a continuous function such that
f(0) = 0 and

lim
t→0+

f(t)

t
= +∞, and lim

t→+∞

f(t)

|t|s
= 0,

for some 0 ≤ s < (N+2(1−2β))
N−2 , and assume that the condition (32) also holds. Then,

there exists λ? > 0 such that for all λ ∈]0, λ?[, the following problem ∆(∆u) + ∆u+ u = λ|x|−2βf(u) + h(u), in Ω,

u =
∂u

∂n
= 0, on ∂Ω,

admits at least one nontrivial weak solution uλ ∈ W 2,2(Ω) ∩W 1,2
0 (Ω). Also, λ? =

+∞, provided q ∈ (1, 2). Moreover, we have

lim
λ→0+

∫
Ω

(
|∆uλ(x)|2 + |∇uλ(x)|2 + |uλ(x)|2

)
dx = 0,

and the mapping

λ 7→ 1
2

∫
Ω

(
|∆uλ(x)|2 + |∇uλ(x)|2 + |uλ(x)|2

)
dx

−
∫

Ω
H(uλ(x)) dx− λ

∫
Ω
|x|−2β

(∫ uλ(x)

0
f(ξ) dξ

)
dx
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is negative and strictly decreasing in ]0, λ?[.

Proof. Clearly, for α = 0, the conclusion follows from Theorem 5.

Remark 4. (see [16, Remark 4.1]) By simple direct computations, since

0 ≤ α < N − 2

2
and α ≤ β < α+ 1,

it follows that

2 <
2(N − 2β)

N − 2(α+ 1)
.

Further, we observe that if, instead of 0 ≤ α < N−2
2 , we require the more condition

0 ≤ α < β(N−2)
N , one has

2(N − 2β)

N − 2(α+ 1)
∈]2, 2?[.

Thus, in this special case, the above relation yields

r? =
2(N − 2β)

N − 2(α+ 1)
.

Taking Remark 4 into account, we have the following results from Theorem 5
motivated by [16, Corollary 4.5].

Corollary 7. Let f : R→ R be a continuous function satisfying the condition (30),

for r ∈]2, r?[, where r? = 2(N−2β)
N−2(α+1) . Further, assume that f(0) = 0 and

lim
t→0+

∫ t
0 f(s) ds

t2
= +∞, (33)

and condition (32) holds. Then, there exists λ? > 0 such that for any λ ∈]0, λ?[, the
problem (29) admits at least one nontrivial weak solution uλ ∈ W 2,2(Ω) ∩W 1,2

0 (Ω).
Also, λ? = +∞, provided q ∈ (1, 2). Moreover,

lim
λ→0+

‖uλ‖ = 0,

and the mapping

λ 7→ 1
2

∫
Ω

(
|x|−2α|∆uλ(x)|2 + |∇uλ(x)|2 + |uλ(x)|2

)
dx

−
∫

Ω
H(uλ(x)) dx− λ

∫
Ω
|x|−2b F (uλ(x)) dx
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is negative and strictly decreasing in ]0, λ?[, where H is the primitive of the nonlin-
earity function h, i.e.,

H(t) :=

∫ t

0
h(s) ds, for each t ∈ R.

The next example we choose a f vanishing at zero with the construction partially
motivated by [16, Example 4.6]. The existence of one nontrivial solution for the
problem involving f is achieved employing Corollary 7.

Example 4. Considere the problem (29) with f(x) := |x|γ−2x + |x|s−2x, for any
x ∈ R, 1 < γ < 2 and 2 < s < r?, and h : R→ R is a Lipschitz continuous function
of 1-order with the Lipschitzian constant 0 < L < 1, a.e.,

|h(x)− h(y)| ≤ L |x− y|,

for every x, y ∈ R, and h(0) = 0 (for example, we can assume that the function h be
defined as h(x) = µ tan−1 x, for each x ∈ R, where µ is a positive constant which
is satisfying in the condition (32)). In fact, f(0) = 0 and it is easy to verify that

|f(t)| ≤ s− γ
s− 1

+
s+ γ

s− 1
|t|s−2, for all t ∈ R.

On the other hand, we observe that

lim
t→0+

∫ t
0 f(s) ds

t2
= lim

t→0+

∫ t
0

(
|x|γ−2x+ |x|s−2x

)
dx

t2

= lim
t→0+

∫ t
0

(
xγ−2 + xs−2

)
dx

t2

= lim
t→0+

(
1

γ−1 t
γ−1 + 1

s−1 t
s−1
)

t2

= +∞.

Thus clearly, all the assumptions of Corollary 7 are fulfilled, ant it is applicable for
the problem (29).

Remark 5. (see [16, Remark 4.3.]) Since f(0) = 0 in the Theorem 5, λ = 0 is a
bifurcation point for problem (29), in the sense that the point (0, 0) belongs to the
closure of the set

Σ := {(u, λ) ∈ (W 2,2(Ω) ∩W 1,2
0 (Ω))×]0,+∞[: u is a weak solution of (29), u 6= 0}

in the space
(
W 2,2(Ω) ∩W 1,2

0 (Ω)
)
× R.
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Remark 6. (see [16, Remark 4.4]) Theorem 6 easily follows from Theorem 5 taking
into account that the following s-sublinear assumption at infinity

lim
|t|→∞

f(t)

|t|s
= 0,

in which s ∈ [0, s?), where

s? := min
{N + 2(α− 2β + 1)

N − 2(α+ 1)
,
N + 2

N − 2

}
,

implies the growth condition (30). In addition, if

lim
t→0+

f(t)

t
= +∞,

also condition (31) holds true.

Remark 7. (see [16, Remark 4.8]) In conclusion, we also note that a related bifur-
cation result (in respect to Theorem 5) for perturbed elliptic problems and involving

the bi-harmonic operator ∆(∆u) := div
(
∇(∆u)

)
. More precisely, if f is satisfying

in the condition (30), under our assumptions at zero, problem{
∆(∆u) + ∆u+ u = λf(u) + h(u), in Ω,

u =
∂u

∂n
= 0, on ∂Ω,

admits at least one nontrivial weak solution and the other conclusions of Theorem 5
hold true.
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