*-RING N-HOMOMORPHISMS BETWEEN TOPOLOGICAL ALGEBRAS

H. Shayanpour

ABSTRACT. We first obtain some results on *-ring *n*-homomorphisms between certain topological algebras. Indeed, if θ is a *-ring *n*-homomorphism from a functionally continuous topological *-algebra A into a symmetric commutative lmc Q-*-algebra B such that $M_A \neq \emptyset$ and $M_B \neq \emptyset$, then $\theta(\operatorname{Rad} A)^{n-1} \subseteq \operatorname{Rad} B$. We also show that there exists a decomposition of M_B under certain conditions. Finally, we show that if θ is a *-ring *n*-homomorphism from a Banach *-algebra onto a unital commutative C^* -algebra B, then there exists k > 0 such that $\|\theta(x)\| \leq k\|x\|$ for every $x \in A$.

2000 Mathematics Subject Classification: Primary 47C10; Secondary 46K05, 16N20, 46H40.

Keywords: *-ring n-homomorphism, topological *-algebra, symmetric, Jacobson radical, commutative lmc Q-*-algebra, Banach *-algebra.

1. INTRODUCTION

We first present the notations, definitions and known results, which are related to our work. For further details one can refer, for example, to [2] and [3].

A locally multiplicatively convex (lmc) algebra is a topological algebra whose topology is defined by a separating family $\mathcal{P} = (p_{\alpha})$ of submultiplicative seminorms.

The set of all characters (non-zero complex-valued homomorphisms) of a algebra A is denoted by S_A . If A is a complex topological algebra, then the set of all continuous characters of A is denoted by M_A and it is called the topological spectrum, or simply spectrum of A. We always endow M_A with the Gelfand topology.

A *-algebra is an algebra with an involution. A topological(Banach) *-algebra is a topological(Banach) algebra and a *-algebra. An *lmc* *-algebra is a *-algebra which is also an *lmc* algebra with a family of seminorms $\mathcal{P} = (p_{\alpha})$, such that $p_{\alpha}(a^*) = p_{\alpha}(a)$ for every α and all $a \in A$. A topological algebra A is a Q-algebra if the set of all quasi invertible elements of A, (q-InvA), is open in A. An *lmc* Q-*-algebra is an lmc *-algebra that is also a Q-algebra. Let A be a *-algebra, we say that A is symmetric if $\widehat{x^*} = \overline{\widehat{x}}$ for every $x \in A$, where \widehat{x} is Gelfand transform of x, and $\overline{\cdot}$ denotes the complex conjugate.

A left ideal I of an algebra A is a modular left ideal if there exists $u \in A$ such that $A(e_A - u) \subseteq I$, where $A(e_A - u) = \{x - xu : x \in A\}$. The Jacobson radical, RadA, of A is the intersection of all maximal modular left ideals of A.

Let A and B be algebras and $n \ge 2$ be an integer. A map $\theta : A \to B$ is called a ring *n*-homomorphism if $\theta(a_1 + a_2) = \theta(a_1) + \theta(a_2)$ and

$$\theta(a_1a_2\cdots a_n)=\theta(a_1)\theta(a_2)\cdots\theta(a_n),$$

for all elements $a_1, a_2, ..., a_n \in A$. If θ is also a linear mapping, then it is called an *n*-homomorphism. A ring 2-homomorphism is then just a ring homomorphism in the usual sense. Obviously, each ring homomorphism is a ring *n*-homomorphism for every $n \geq 2$, but the converse is not true, in general. For example, if φ is a ring homomorphism, then $\theta = -\varphi$ is a ring 3-homomorphism which is not a ring homomorphism. For certain properties of *n*-homomorphisms one may refer to [1, 4, 5, 6, 7, 10, 12]. Let A and B be *-algebras and $\theta : A \to B$ be a ring *n*homomorphism, we say that θ is a *-ring *n*-homomorphism if $\theta(x^*) = (\theta(x))^*$ for all $x \in A$.

In 1954 Kaplansky [8] proved that if θ is a ring isomorphism between semisimple complex Banach algebras, then θ can be decomposed into a linear part, a conjugate linear part and a non-continues part on a finite dimensional ideal. In 1999 Šemrl [11] proved that if X and Y are compact Hausdorff spaces and if $\theta : C(X) \to C(Y)$ is a *-ring homomorphism, then there exist a clopen decomposition $\{Y_{-1}, Y_0, Y_1\}$ of Y and a continuous map $\Phi : Y_{-1} \cup Y_1 \to X$ such that for every $f \in C(X)$

$$\theta(f)(y) = \begin{cases} \overline{f(\Phi(y))}, & y \in Y_{-1}, \\ 0, & y \in Y_0, \\ f(\Phi(y)), & y \in Y_1. \end{cases}$$

In 2000 T. Miura [9] proved that each *-ring homomorphism from a commutative Banach *-algebra A, into a non-radical commutative symmetric Banach *-algebra B, maps the Jacobson radical of A into the Jacobson radical of B, moreover if A is a non-radical, then there exists a decomposition of M_B . We show that if Aand B are topological *-algebras such that B is a commutative symmetric lmc Q-*-algebra, $M_A \neq \emptyset$, $M_B \neq \emptyset$ and $\theta : A \to B$ is a *-ring *n*-homomorphism, then $\theta(\text{Rad}A)^{n-1} \subseteq \text{Rad}B$. We also show that if A and B are topological *-algebras such that $M_A \neq \emptyset$, $M_B \neq \emptyset$ and $\theta : A \to B$ is a *-ring *n*-homomorphism, then there exist a decomposition $\{Y_{-1}, Y_0, Y_1\}$ of M_B and a continuous map $\Phi : Y_{-1} \cup Y_1 \to M_A$ such that for $\psi \in Y_{-1} \cup Y_1$, there exists constant $L_{\psi} \in \mathbb{C}$ such that for every $x \in A$ we have

$$\theta(x)(\psi) = \begin{cases} \widehat{x}(\Phi(\psi))L_{\psi}, & \psi \in Y_{-1}, \\ \widehat{x}(\Phi(\psi))L_{\psi}, & \psi \in Y_{1}. \end{cases}$$

Also Y_{-1}, Y_1 are open subsets in M_B . Finally, we show that if θ is a *-ring *n*-homomorphism from a Banach *-algebra onto a unital commutative C^* -algebra B, then there exists k > 0 such that $\|\theta(x)\| \leq k\|x\|$ for every $x \in A$.

2. Main Results

A topological algebra A is called functionally continuous if every character on A is continuous, in other words, $S_A = M_A$. Clearly every Banach algebra is functionally continuous. It is also known that Q-algebras are functionally continuous [2, 2.2.28].

The following lemma has been proved by T. Miura [9], for commutative Banach *-algebras, but it is also valid for topological *-algebras.

Lemma 1. Let A be a topological *-algebra such that A is functionally continuous. If $\theta : A \to \mathbb{C}$ is a *-ring homomorphism, then

$$\theta = 0$$
 or $\theta \in M_A$ or $\theta \in M_A$.

Theorem 2. Let A and B be topological *-algebras such that A is functionally continuous, B is symmetric, $M_A \neq \emptyset$ and $M_B \neq \emptyset$. If $\theta : A \rightarrow B$ is a *-ring n-homomorphism, then

$$\theta(\bigcap_{\varphi\in M_A}\ker\varphi)^{n-1}\subseteq\bigcap_{\varphi\in M_B}\ker\varphi.$$

Proof. We assume that $x \in \bigcap_{\varphi \in M_A} \ker \varphi$ and $\psi \in M_B$. If $\psi(\theta(x)) = 0$, then $\theta(x)^{n-1} \in \ker \psi$, otherwise, $\psi(\theta(x)) \neq 0$. By the equality

$$\begin{aligned} |\psi(\theta(x))|^{2n} = &(\psi(\theta(x))\overline{\psi(\theta(x))})^n = (\psi(\theta(x)\theta(x)^*))^n \\ = &(\psi(\theta(x)\theta(x^*)))^n = \psi((\theta(x)\theta(x^*))^n), \end{aligned}$$

one can see that $\psi(\theta(xx^*)) \neq 0$. Define $S_{\psi}: A \to \mathbb{C}$ to be

$$S_{\psi}(y) = \frac{\psi(\theta(xx^*y))}{\psi(\theta(xx^*))}.$$

Now we show that S_{ψ} is a *-ring homomorphism. For every $y_1, y_2 \in A$, we have

$$S_{\psi}(y_1y_2) = \frac{\psi(\theta(xx^*y_1y_2))}{\psi(\theta(xx^*))} = \frac{\psi(\theta(xx^*y_1y_2))\psi(\theta(xx^*)^{n-1})}{\psi(\theta(xx^*))^n}$$
$$= \frac{\psi(\theta(xx^*y_1y_2(xx^*)^{n-1}))}{\psi(\theta(xx^*))^n}$$
$$= \frac{\psi(\theta(xx^*y_1))\psi(\theta(y_2xx^*))(\psi(\theta(xx^*)))^{n-2}}{\psi(\theta(xx^*))^n}$$
$$= \frac{\psi(\theta(xx^*y_1))}{\psi(\theta(xx^*))} \cdot \frac{\psi(\theta(y_2xx^*))}{\psi(\theta(xx^*))}.$$

Also,

$$\psi(\theta(y_2xx^*)) = \frac{\psi((\theta(xx^*))^{n-1})}{\psi((\theta(xx^*))^{n-1})} \cdot \psi(\theta(y_2xx^*)) = \frac{\psi(\theta((xx^*)^{n-1}y_2xx^*))}{\psi((\theta(xx^*))^{n-1})}$$
$$= \frac{\psi((\theta(xx^*))^{n-2})\psi(\theta(xx^*y_2))\psi(\theta(xx^*))}{\psi((\theta(xx^*))^{n-1})} = \psi(\theta(xx^*y_2)),$$

so $S_{\psi}(y_1y_2) = S_{\psi}(y_1)S_{\psi}(y_2)$. On the other hand,

$$S_{\psi}(y^*) = \frac{\psi(\theta(xx^*y^*))}{\psi(\theta(xx^*))} = \frac{\psi(\theta((yxx^*)^*))}{\psi(\theta((xx^*))^*)} = \overline{\left(\frac{\psi(\theta(yxx^*))}{\psi(\theta(xx^*))}\right)} = \overline{\left(\frac{\psi(\theta(xx^*y))}{\psi(\theta(xx^*))}\right)}$$
$$= \overline{S_{\psi}(y)}.$$

Now by Lemma 1 we have

$$S_{\psi} = 0 \quad \text{or} \quad S_{\psi} \in M_A \quad \text{or} \quad \overline{S_{\psi}} \in M_A.$$

Since $x \in \bigcap_{\varphi \in M_A} \ker \varphi$, in any cases, we have $S_{\psi}(x^{n-1}) = 0$. We also have

$$0 = S_{\psi}(x^{n-1}) = \frac{\psi(\theta(xx^*))\psi((\theta(x))^{n-1})}{\psi(\theta(xx^*))} = \psi((\theta(x))^{n-1}),$$

so $\theta(x)^{n-1} \in \ker \psi$. Since ψ is arbitrary, hence $\theta(x)^{n-1} \in \bigcap_{\varphi \in M_B} \ker \varphi$.

Corollary 3. By the assumptions in Theorem 2, we have

$$\theta(\operatorname{Rad} A)^{n-1} \subseteq \bigcap_{\varphi \in M_B} \ker \varphi.$$

Proof. By [3, 4.22(1)], Rad $A \subseteq \bigcap_{\varphi \in M_A} \ker \varphi$.

Corollary 4. In addition to the assumptions in Theorem 2, if B is a commutative $lmc \ Q$ -*-algebra, then $\theta(\operatorname{Rad} A)^{n-1} \subseteq \operatorname{Rad} B$.

Proof. By [3, 4.22(3)], Rad $B = \bigcap_{\varphi \in M_B} \ker \varphi$. and Corollary 3.

Theorem 5. Let A and B be topological *-algebras such that A is functionally continuous, B is symmetric, $M_A \neq \emptyset$ and $M_B \neq \emptyset$. If $\theta : A \rightarrow B$ is a *-ring n-homomorphism, then there exists a decomposition $\{Y_{-1}, Y_0, Y_1\}$ of M_B and a continuous map $\Phi : Y_{-1} \cup Y_1 \rightarrow M_A$ such that for $\psi \in Y_{-1} \cup Y_1$, there exists a constant $L_{\psi} \in \mathbb{C}$ such that for every $x \in A$ we have

$$\theta(x)(\psi) = \begin{cases} \overline{x(\Phi(\psi))} L_{\psi}, & \psi \in Y_{-1}, \\ \widehat{x(\Phi(\psi))} L_{\psi}, & \psi \in Y_{1}. \end{cases}$$

Also Y_{-1}, Y_1 are open subsets in M_B .

Proof. For every $\psi \in M_B$, we define function $T_{\psi} : A \to \mathbb{C}$ such that

$$T_{\psi}(x) = \psi(\theta(x)) = \theta(x)(\psi).$$

We see that T_{ψ} is a *-ring *n*-homomorphism, if $T_{\psi} = 0$, then we define $S_{\psi} = 0$, otherwise, there exists $a_{\psi} \in A$ such that $T_{\psi}(a_{\psi}) \neq 0$. Considering the following relation

$$\begin{aligned} |\psi(\theta(a_{\psi}))|^{2n} &= (\psi(\theta(a_{\psi}))\overline{\psi(\theta(a_{\psi}))})^n = (\psi(\theta(a_{\psi})\theta(a_{\psi})^*))^n \\ &= (\psi(\theta(a_{\psi})\theta(a_{\psi}^*)))^n = \psi((\theta(a_{\psi})\theta(a_{\psi}^*))^n), \end{aligned}$$

it is easy to see that $T_{\psi}(a_{\psi}a_{\psi}^*) = \psi(\theta(a_{\psi}a_{\psi}^*)) \neq 0$. Now consider the function $S_{\psi} : A \to \mathbb{C}$ defined by $S_{\psi}(x) = \frac{T_{\psi}(a_{\psi}a_{\psi}^*x)}{T_{\psi}(a_{\psi}a_{\psi}^*)}$. Now by the same method used in Theorem 2 we can show that S_{ψ} is a *-ring homomorphism. By Lemma 1, $S_{\psi} = 0$ or $S_{\psi} \in M_A$ or $\overline{S_{\psi}} \in M_A$. We define Y_{-1}, Y_0 and Y_1 as follows

$$Y_{-1} = \{ \psi \in M_B : \overline{S_{\psi}} \in M_A \}, Y_0 = \{ \psi \in M_B : S_{\psi} = 0 \}, Y_1 = \{ \psi \in M_B : S_{\psi} \in M_A \}.$$

It is easy to check that the set $\{Y_{-1}, Y_0, Y_1\}$ is a decomposition of M_B and Y_{-1}, Y_1 are open subset in M_B . Now we define function $\Phi: Y_{-1} \cup Y_1 \to M_A$ as follows

$$\Phi(\psi) = \begin{cases} \overline{S_{\psi}}, & \psi \in Y_{-1}, \\ S_{\psi}, & \psi \in Y_{1}. \end{cases}$$

One can see that Φ is continuous by weak^{*} topology and

$$\theta(a_{\psi}a_{\psi}^*x)(\psi) = x(\Phi(\psi))\psi(\theta(a_{\psi}a_{\psi}^*)).$$

By the equality

$$\begin{aligned} |\psi(\theta(a_{\psi}))|^{4n} = &(\psi(\theta(a_{\psi}))\overline{\psi(\theta(a_{\psi}))})^{2n} = (\psi(\theta(a_{\psi})\theta(a_{\psi})^{*}))^{2n} \\ = &(\psi(\theta(a_{\psi})\theta(a_{\psi}^{*})))^{2n} = \psi((\theta(a_{\psi})\theta(a_{\psi}^{*}))^{2n}), \end{aligned}$$

we can show that $T_{\psi}((a_{\psi}a_{\psi}^*)^2) = \psi(\theta((a_{\psi}a_{\psi}^*)^2)) \neq 0$. Now for every $\psi \in Y_1$ and $x \in A$ we have

$$\begin{aligned} \theta(a_{\psi}a_{\psi}^{*}x)(\psi) &= \psi(\theta(a_{\psi}a_{\psi}^{*}x)) = \frac{\psi(\theta(a_{\psi}a_{\psi}^{*}x))\psi(\theta(a_{\psi}a_{\psi}^{*})^{n-1})}{\psi(\theta(a_{\psi}a_{\psi}^{*})^{n-1})} \\ &= \frac{\psi(\theta(a_{\psi}a_{\psi}^{*}x(a_{\psi}a_{\psi}^{*})^{n-1})}{\psi(\theta(a_{\psi}a_{\psi}^{*})^{n-1})} \\ &= \frac{\psi(\theta(a_{\psi}a_{\psi}^{*}))\psi(\theta(x))\psi(\theta(a_{\psi}a_{\psi}^{*}))^{n-3}\psi(\theta((a_{\psi}a_{\psi}^{*})^{2}))}{\psi(\theta(a_{\psi}a_{\psi}^{*})^{n-1})} \\ &= \frac{\psi(\theta(x))\psi(\theta((a_{\psi}a_{\psi}^{*})^{2}))}{\psi(\theta(a_{\psi}a_{\psi}^{*}))}. \end{aligned}$$

So

$$\psi(\theta(x)) = \theta(a_{\psi}a_{\psi}^*x)(\psi)\frac{\psi(\theta(a_{\psi}a_{\psi}^*))}{\psi(\theta((a_{\psi}a_{\psi}^*)^2))} = \widehat{x}(\Phi(\psi))\frac{\psi(\theta(a_{\psi}a_{\psi}^*))}{\psi(\theta((a_{\psi}a_{\psi}^*)^2))}$$

If $L_{\psi} = \frac{\psi(\theta(a_{\psi}a_{\psi}^*)^2)}{\psi(\theta((a_{\psi}a_{\psi}^*)^2))}$, then we have $\theta(x)(\psi) = x(\Phi(\psi))L_{\psi}$. By similar discussion, for every $\psi \in Y_{-1}$ and $x \in A$, we can say that there exists $L_{\psi} \in \mathbf{C}$ such that $\theta(x)(\psi) = \overline{x(\Phi(\psi))}L_{\psi}$.

Theorem 6. Let A be a Banach *-algebra and B be a unital symmetric commutative Banach *-algebra such that $\|b\|_B = \|\hat{b}\|_{\infty}$ holds for every $b \in B$. If $\theta : A \to B$ is a surjective *-ring n-homomorphism, then there exists k > 0 such that $\|\theta(x)\| \le k \|x\|$, for every $x \in A$.

Proof. By hypothesis, there exists $a \in A$ such that $\theta(a) = 1_B$, so for every $\psi \in M_B$, $\psi(\theta(a)) = 1$. Now consider a_{ψ} , L_{ψ} and S_{ψ} defined in previous theorem. So we have

$$|\psi(\theta(x))| = |S_{\psi}(x)L_{\psi}| \le ||x|| |L_{\psi}|,$$

in other words,

$$|\psi(\theta(x))\psi(\theta((a_{\psi}a_{\psi}^{*})^{2}))| \leq ||x|| |\psi(\theta(a_{\psi}a_{\psi}^{*}))^{2}|.$$

Considering the following relation

$$\begin{aligned} \theta((a_{\psi}a_{\psi}^{*})^{2})) &= \theta((a_{\psi}a_{\psi}^{*})^{2}))\theta(a)^{n-1} = \theta((a_{\psi}a_{\psi}^{*})^{2}a^{n-1}) = \theta((a_{\psi}a_{\psi}^{*})^{2}a^{n-1})\theta(a)^{n-1} \\ &= \theta((a_{\psi}a_{\psi}^{*})^{2}a^{2n-2}) = \theta(a_{\psi}a_{\psi}^{*})^{2}\theta(a)^{n-3}\theta(a^{n+1}) \\ &= \theta(a_{\psi}a_{\psi}^{*})^{2}\theta(a)^{n-1}\theta(a^{2}) \\ &= \theta(a_{\psi}a_{\psi}^{*})^{2}\theta(a^{2}), \end{aligned}$$

we conclude that $|\psi(\theta(x))\psi(\theta(a^2))| \leq ||x||$. Now, by the equality

$$1 = \psi(\theta(a))^{2n} = \psi(\theta(a^n)\theta(a)^n) = \psi(\theta(a^{2n-1})\theta(a)),$$

we can see that $\psi(\theta(a^2)) \neq 0$. Hence, if $k = \left|\frac{1}{\psi(\theta(a^2))}\right|$, then we have

$$\|\theta(x)\| \le k\|x\|.$$

So the desired result is obtained.

Corollary 7. Let A be a Banach *-algebra and B be a unital commutative C*algebra. If $\theta : A \to B$ is a surjective *-ring n-homomorphism, then there exists k > 0 such that $\|\theta(x)\| \le k \|x\|$, for every $x \in A$.

Acknowledgement. The author would like to express his sincere appreciation to the Shahrekord university and the center of excellence for mathematics for nancial supports.

References

[1] J. Bračič, M.S. Moslehian, On automatic continuity of 3-homomorphisms on Banach algebras, Bull. Malays. Math. Sci. Soc. (2) 30, 2 (2007), 195-200.

[2] H.G. Dales, *Banach Algebras and Automatic Continuity*, London Mathematical Society, Monograph 24, Clarendon Press, Oxford, 2000.

[3] M. Fragoulopoulou, Topological Algebras with Involution, Elsevier, 2005.

[4] M. Hejazian, M. Mirzavaziri, M.S. Moslehian, *n-homomorphism*, Bull. Iranian Math. Soc. 31, 1 (2005), 13-23.

[5] T.G. Honary, M. Najafi Tavani, H. Shayanpour, Automatic continuity of nhomomorphisms on Fréchet algebras, Qua. Math., 34 (2011), 265-274.

[6] T.G. Honary, H. Shayanpour, Automatic continuity of n-homomorphisms between Banach algebras, Qua. Math., 33 (2010), 189-196. [7] T.G. Honary, H. Shayanpour, Automatic continuity of n-homomorphisms between topological algebras, Bull. Aust. Math. Soc., 83, 03 (2011), 389-400.

[8] I. Kaplansky, *Ring isomorphisms of Banach algebras*, Canad. J. Math. 6 (1954), 374-381.

[9] T. Miura, Star ring homomorphisms between commutative Banach algebras, Proc. Amer. Math. Soc. 129, 7 (2000),2005-2010.

[10] E. Park, J. Trout, On the nonexistence of nontrivial involutive nhomomorphisms of C*-algebras, Trans. Amer. Math. Soc. 361 (2009), 1949-1961.

[11] P. Šemrl, Non linear perturbations of homomorphisms on C(X), Quart. J. Math. Oxford Ser.(2) 50, 197 (1999), 87-109.

[12] H. Shayanpour, T.G. Honary, M.S. Hashemi, *Certain properties of n-characters* and *n-homomorphisms on topological algebras*, Bull. Malays. Math. Sci. Soc, to apper.

Hamid Shayanpour

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Shahrekord,

Shahrekord 88186-34141, Iran

email: h.shayanpour@sci.sku.ac.ir