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THE APPLICATION OF MODIFIED HOMOTOPY ANALYSIS
METHOD FOR SOLVING LINEAR AND NON-LINEAR
INHOMOGENEOUS KLEIN-GORDON EQUATIONS
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Abstract. Homotopy Analysis method has been applied to solve many func-
tional equations. In this paper, a modified Homotopy Analysis method (mHAM) is
presented for solving inhomogeneous linear and nonlinear Klein-Gordon equations.
The results reveal that the modified HAM is an effective and convenient method for
solving non-linear differential equations. Sometimes, the modified algorithm may
give the exact solution for inhomogeneous differential equations by using only two
iterations.
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1. Introduction

One of the most important of partial differential equations occurring in applied math-
ematics is associated with the name of Klein-Gordon. The Klein-Gordon equation
plays an important role in mathematical physics such as plasma physics, solid state
physics, fluid dynamics and chemical kinetics[1-3]. We consider the Klein-Gordon
equation as follows

utt − uxx +N(u(x, t)) = f(x, t), (1)

subject to initial conditions

u(x, 0) = g(x), ut(x, 0) = h(x), (2)

where u is a function of x and t, N(u(x, t)) is a nonlinear function, and f(x, t) is a
known analytic function. There are some methods to obtain approximate solutions
of functional equations. One of them is Homotopy Analysis Method. Initially,
Homotopy Analysis Method (HAM) proposed by Liao in his Ph.D. thesis [4] which
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is a powerful method to solve nonlinear problems. In recent years, this method has
been successfully employed to solve many types of nonlinear problems in sciences and
engineering [5-19]. HAM contains a certain auxiliary parameter h, which provides
us with a simple way to adjust and control the convergence region and rate of
convergence of the series solution. Moreover, by means of the so-called h-curve, a
valid region of h can be studied to gain a convergent series solution. More recently, a
powerful modification of HAM was proposed in [20-22]. The purpose of the present
paper is to apply modified version of HAM to class inhomogeneous Klein-Gordon
equations.

2. Basic idea of HAM

To illustrate the basic concept of Homotopy Analysis method, consider the following
nonlinear differential equation

N [(u(τ)] = 0, (3)

with boundary conditions
B(u, ∂u/∂(n) = 0, (4)

where N is a nonlinear operator, τ denotes independent variables, and u(τ) is an un-
known function. By generalizing the traditional Homotopy method, Liao constructs
a so- called zero - order deformation equation.

(1− p)L[φ(τ ; p)− u0(τ)] = phH(τ)N [φ(τ ; p)], (5)

where p[0, 1] is the embedding parameter, h is a nonzero parameter, H(τ) is an
auxiliary function, L is an auxiliary linear operator, u0(τ) is an initial guess of u(τ),
and φ(τ ; p) is an unknown function. It is important that one has great freedom to
choose auxiliary things in HAM. Obviously, when p = 0 and p = 1 it holds

φ(τ ; 0) = u0(τ), φ(τ ; 1) = u(τ).

Thus, as p increases from 0 to 1, the solution φ(τ ; p) varies from initial guesses u0(τ)
to the solution u(τ). Expanding in the Taylor series with respect to p, results in

φ(τ ; p) = u0(τ) +

∞∑
m=0

um(τ)pm, (6)

where

um(τ) =
1

m!

∂mφ(τ ; p)

∂pm
|p = 0.
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If the auxiliary linear operator, the initial guess, and the auxiliary parameter h are
so properly chosen, the above series convergent at p = 1, then we derive

u(τ) = u0(τ) +

∞∑
m=1

um(τ). (7)

The vector ~u is defined as follows

~u = {u0(τ), u1(τ), u2(τ), ...}.

Differentiating Eq. (2), m times with respect to the embedding parameter p and
then setting p = 0 and finally dividing them by m! , the mth-order deformation is
given by

L[um(τ)− χmum−1(τ)] = hH(τ)Rm(~um−1(τ)). (8)

where

Rm(~um−1(τ)) =
1

(m− 1)!

∂m−1N(φ(τ ; p))

∂pm−1
|p=0, (9)

and if m 6 1 then χm = 0 otherwise, χm = 1.
Applying L−1 both sides of (8), it can be derived

um = χmum−1 + hL−1[H(τ)Rm(um−1)]. (10)

This way, it is easy to obtain um for m > 1, at Mth-order we have

u(τ) =

M∑
m=0

um(τ).

when M →∞, an accurate approximation of the original Eq. (3) is obtained.

3. Description of the modified Homotopy Analysis Method

Consider the following nonlinear differential equation

N [u(r)] = f(r).

The modified form of the HAM can be established based on assumption that the
function f(r) can be divided in to several parts, namely,

f(r) =

m∑
n=0

fn. (11)
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Then, we can construct the modified mth - order deformation equation,

L[u0(r)] = f0(r),

L[u1(r)− u0(r)] = h(R1((u0)− f1(r)),

L[um(r)− χmum−1(r)] = h(Rm(um−1)− fm(r)), 2 6 m 6 n,

L[um(r)− χmum−1(r)] = hRm(um−1),m > n.

By considering h = −1 , we derive

L[u0(r)] = f0(r),

L[u1(r)− u0(r)] = −(R1(u0)− f1(r)),

L[um(r)− χmum−1(r)] = −(Rm(um−1)− fm(r)), 2 6 m 6 n,

L[um(r)− χmum−1(r)] = −Rm(um−1),m > n.

Sometimes f(r) may not be finite function. In these cases, Taylor series expansion
of f(r) is considered. In this case, we have

f(r) =
∞∑
n=0

fn. (12)

Then
L[u0(r)] = f0(r),

L[u1(r)− u0(r)] = −(R1(u0)− f1(r)),

L[um(r)− χmum−1(r)] = −(Rm(um−1)− fm(r)),m > 2.

4. Numerical application

In this section, modified HAM is applied to find appropriate solutions of Klein- Gor-
don equations. The numerical results are very encouraging.

Example 1
Consider inhomogeneous linear Klein-Gordon equation

utt − uxx + u = 2sin(x), (13)

with initial conditions
u(x, 0) = sin(x), ut(x, 0) = 1. (14)
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The exact solution of (13) is u = sin(x) + sin(t). We choose the linear operator as
follows

L[φ(τ ; p)] =
∂2φ(τ ; p)

∂t2
,

with the property L[c0 + c1t] = 0, where c0 ,c1 are constants of integration and we
define a nonlinear operator as the following form

N [φ(τ ; p)] =
∂2φ(τ ; p)

∂t2
− ∂2φ(τ ; p)

∂x2
+ φ(τ ; p).

By taking f0(r) = 2sin(x), and f1(r) = 0, we derive

L[u1(t)− u0(t)] = −(N [u0(t)]− 0),

L[um(t)− um−1(t)] = −(N [um−1(t)]),m > 2.

That is
u0tt = 2sinx, u0(x, 0) = sin(x), u0t(x, 0) = 1,

u1tt − u0tt = −(u0tt − u0xx + u0 − 0), u1(x, 0) = 0, u1t(x, 0) = 0,

(um)tt−(um−1)tt = −((um−1)tt−(um−1)xx+um−1), um−1(x, 0) = 0, um−1t(x, 0) = 0.

So
u0(x, t) = sin(x) + t+ t2sin(x),

u1(x, t) =
−1

6
sin(x)t4 − 1

6
t3 − t2sin(x),

u2(x, t) =
1

90
sin(x)t6 +

1

120
t5 +

1

6
t4sin(x).

Now the 3-term approximate solution can be obtained as follows

u0 + u1 + u2 = sin(x) + t− 1

6
t3 +

1

90
sin(x)t6 +

1

120
t5.

If we choose f0(r) = 0 and f1(r) = 2sin(x), then we get

L[u0(t)] = 0,

L[u1(t)− u0(t)] = −(N [u0(t)]− 2sin(x)),

L[um(t)− um−1(t)] = −(N [um−1(t)]),m > 2.

So
u0tt = 0, u0(x, 0) = sin(x), u0t(x, 0) = 1,
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u1tt − u0tt = −(u0tt − u0xx + u0 − 0), u1(x, 0) = 0, u1t(x, 0) = 0,

(um)tt−(u(m−1))tt = −((u(m−1))tt−(u(m−1))xx+um−1), um−1(x, 0) = 0, (um−1)t(x, 0) = 0,m > 2.

Therefore, the following results will be obtained

u0(x, t) = sin(x) + t,

u1(x, t) =
−1

6
t3,

u2(x, t) =
1

120
t5,

u3(x, t) =
−1

5040
t7.

Hence, the series solution of (13) is

u(x, t) = sin(x) + (t− 1

6
t3 +

1

120
t5 − 1

5040
t7 + ...) = sin(x) + sin(t),

which is exact solution.

Example 2
Consider inhomogeneous non-linear Klein-Gordon equation as follows

utt − uxx + u2 = 2x2 − 2t2 + x4t4, (15)

with initial conditions

u(x, 0) = 0, ut(x, 0) = 0.

The exact solution of Eq. (15) is u(x, t) = x2t2.
The linear operator L and nonlinear operator N are selected similar to Example 1.
By considering f0(r) = 2x2 − 2t2 + x4t4 and f1(r) = 0, we get

L[u0(t)] = 2x2 − 2t2 + x4t4,

L[u1(t)− u0(t)] = −(N [u0(t)]− 0),

L[um(t)− um−1(t)] = −(N [um−1(t)]),m > 2.

So

u0(x, t) = x2t2 − t4

6
+
x4t6

30
,

u1(x, t) = − 1

163800
t14x8 +

1

11880
t12x4 − 1

1350
t10 +

11

840
t8x2 − x4t6

30
+
t4

6
.
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Now the 2-term approximate solution,will be derived as follows

u0 + u1 = − 1

163800
t14x8 +

1

11880
t12x4 − 1

1350
t10 +

11

840
t8x2 + x2t2.

If we choose f0(r) = 2x2 and f1(r) = −2t2 + x4t4, then

u0(x, t) = x2t2,

u1(x, t) = 0,

uk(x, t) = 0, k > 1.

Hence, the series solution of (15) is

u(x, t) = x2t2.

Considering f0(r) = 2x2, f1(r) = −2t2 , and f2(r) = x4t4, result in

u0(x, t) = x2t2,

u1(x, t) = −x
4t6

30
,

u2(x, t) = +
x4t6

30
.

So, the series solution of Eq. (15) will be obtained as follows

u(x, t) = x2t2.

Example 3
Consider inhomogeneous non- linear Klein-Gordon equation

utt − uxx + u2 = −xcost+ x2cos2(t), (16)

with initial conditions

u(x, 0) = x, ut(x, 0) = 0.

The exact solution of Eq. (16) is u(x, t) = xcost. Let’s consider f0(r) = −xcost and
f1(r) = x2cos2(t).
So we have

L[u0(t)] = −xcost,
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L[u1(t)− u0(t)] = −(N [u0(t)]− x2cos2(t)),

L[um(t)− u(m− 1)(t)] = −(N [u(m− 1)(t)]),m > 2.

Consequently, solving the above equations, the first few components of the HAM
are derived as follows

u0(x, t) = xcos(t),

u1(x, t) = 0,

u2(x, t) = 0,

uk(x, t) = 0, k > 1.

Therefore, the exact solution of Eq. (16) can be obtained as follows

u(x, t) = xcos(t).

5. Conclusion

In this paper, the modified HAM was applied to solve linear and nonlinear inhomo-
geneous Klein-Gordon Equations. The main advantage of the modified HAM is that
we can accelerate the convergence rate, minimize iterative times, accordingly save
computation time and promote the efficiency, if we choose the proper decomposition
for the inhomogeneous term. The obtained results suggest that this technique intro-
duces a powerful improvement for solving non-homogeneous differential equations.
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