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ABOUT SOME PROPERTIES OF THE EXPONENTIAL
FAMILIES AND FISHER INFORMATION

IoN MiHOC AND CRISTINA-IOANA FATU

ABSTRACT. Fisher information is a fundamental concept of statistical the-
ory and plays an important role in many areas of statistical analysis. Impor-
tance of Fisher information as a measure of the information in a distribution
is well known. In classical inference with a random sample, the Fisher infor-
mation appears in the Cramer-Rao lower bound which is a fundamental limit
of the variance of an unbiased or biased estimator.

Let X = (X1, Xy, ..., X,,) be a sample from the population P = {F : 0 €
Dy} — a parametric family, where Dy is called the parameter space, Dy C R*
( k is some fixed positive integer, k& > 1) and let f(x;6) be the probability
density function for some model of the data, which has parameter vector 6
= (91, 92, ceey Gk)

In this article, under certain regularity conditions, we discuss some prop-
erties of the Fisher information then we have in view a random variable X
which belongs to the class of exponential dispersion models. This class, intro-
duced by Jorgensen (2], include as a special case, the generalized liniar model
families of Nelder and Wedderburn [4] as well as many standard families such
as Normal, Gamma, Inverse Gaussian and others. Also, using a weight func-
tion, w(x) > 0, we analyse the Fisher information associeaed to f,(z;6)— the
probability density function of the weighted distribution corresponding to the
random variable X.

2000 Mathematics Subject Classification: 62B10, 62F10, 94A17.
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INTRODUCTION

We recall that, in statistical inference, the data can be represented as a
random element X (known as a theoretical random variable)
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with values in measurable space (2, K), where K is a o—algebra. If

the distribution P, of X is assumed to belong to a parametric family P =
{Py : 0 € Dy}, then the triple (2, K, P) will be a statistical model. Also, the

data set, x = (x1, z9, ..., T,), is viewed as a realization of this random element
defined on a probability space (€2, K, P) or as a realization of the random
sample vector X = (X7, Xo, ..., X,,). Because, generally, the goal is to use the
data x to get information on the unknown value of the parameter ¢ or on g(0),
where ¢ : Dy C RF is a parametric function, in the next, we consider a family
of probability density functions {f(x;0) : 0 € Dy}, where Dy C R, (k > 1).

In the next, the parameter space Dy can either be an open subset of
the real line R if £ = 1 or an open subset of n—dimensional Euclidian
space R*.

Let X = (X3, Xy, ..., X;,) be a random sample of the size n from a popu-
lation characterized by the parameter 6 and density function f(z;0), 6 € Dy,
where Dy is an open subset of the real line R (i.e., k = 1) and a statistic

T(X) = T(X1, Xo, o, X») (1.1)

which is a function of the random sample variables X7, X5, ..., X, that does not

depend upon any unknown parameter 6. Evidently, in the”’suppositional
optics”, this statistic 7(X) is a random variable what can be used as an
”approximation” for the parametric function g(#).

Thus, if 1, z, ..., x,, are the observed experimental values of X1, Xs, ..., X,
then the real number y = T'(x) = T'(x1, x, ..., ,,) can be a good point esti-
mate of 0 or of the parametric function g(¢) and 7'(X) can be a good point
estimator of 6 or g(6).

From a probabilistic point of view, the ”information” within the statistic
T(X) (concerning the unknown distribution of X, i.e., with respect to the
unknown parameter ) is contained in o(7'(X)—the o—field generated by the
statistic T'(X).

2. Score functions and Fisher’s information measures

Let X be a continuous random variable with the probability density func-
tion f(x;0),where 8 = (01,0,,...,0;), 0 € Dy C R* k> 1.

In the next, we consider the random vector

Sp(X) =X =(X1, Xo, ..., Xp), (2.1)
which represents a random sample of size n, where the components X;, i =

1,n, are random variables statistically independent and identically
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distributed as the theoretical random variable X, that is, we have
f(x;0) = f(zs;0); i =1,n,0 € D,. (2.2)

Let

n

Ln(1, 2, s T3 01, 02, o0 0k) = Lo (0;%) = [ [ £33 61,02, ..,66)  (2.3)

=1

be the joint probability density for the random sample S,(X) which, viewed
as a function of the unknown parameter 6 given x, is the likelihood function
and

In L,,( Zlnf ;61,04 ..., 01) (2.4)

is the log-likelihood function corresponding to L,(0;x), where x =
(21, T3, ..., T,) belongs to the selection space R™ and 6 = (01,65, ..., 0;) € Dy.

Remark 2.1. Because the parametric measures of information are applica-
ble to regular families of probability distributions, in the next, for the function
f(z;0), as well as for the likelihood function L, (0y,0a, ..., 0x; x), which are the
probability density functions, we assume that are satisfied the following Fisher
information regularity conditions (FIRCs):

R,) The set {z: f(x,0) > 0} is the same for all z € Q and all § € Dy;

Rs) 55 [f(z,0)] exists for all z € Q, all § € Dy and all i = 1, k;

R3) 89 {/fx&dx}:/ -[f(z,0)]dz for any A, A C K, all § € Dy and

alli =1,k
R4)/ﬁ[f(x,0)]d$<oo forany A, A C K,alld € Dygandalli =1, k.
4 709

Definition 2.1. I'f for the probability distribution f(x;0) (either discrete
or continuous), that depends on the parameter 0,0 € Dy C R* (k> 1), are
satisfied the FIRCs, then L,(x;0) is a dif ferentiable function and the
function U : R" — R as

dlog L,(0;x) 1 0L,(0;x)

Ulfsx) =U = 90 L.(0:x) 00

(2.5)
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is called the score of the sample S, (X) or, simply, the score function
with respect to 6 €D, C RF.

Remark 2.2. Because 6 = (0,0,,...,0,) € Dy C R* the score function
U = U(#; x) will be an k—dimensional random vector as

U = (U, Us, ..., Up)T, (2.6)

where

OlnL,(0;X) 0lnL,(0,0s....0;X) . —
of 56, 20, Jj=1k (2.7)

represents the score of the sample with respect to the parameter 6,
0; € D; CR, j=1,k.

We can remark that , in the ”suppositional optics” ,all these score func-
tions are random variables because, for a given value of #, the score functions
depend on the sample. Also, the score function can be interpreted as: the value

of the score of the sample is a measure of the sensitivity of the sample log-
likelihood to small changes of the value of 6. If the value of the score is small
for a given value of 6, the likelihood of the sample (that is, its probability
density) will be essentially unaffected by small changes of 6.

Lemma 2.1. [4] Under the FI1RC's the expectation of the score function
has the value zero (or the score function is centred), that is

Ey[U(6; X)] :Eg[% [In L, (6; X)] =0 for all 6 € Dy, (2.8)

where 0 = (01,0,,....0,) € Dy C R and Ey represents expectation with
respect to the distribution determined by 6.

Lemma 2.2.[4] Under the FIRCSs, the second moment of the score
function, when k =1 (i.e., 0 € Dy C R), has the following property

lnL,(0;X)1%| 9%In L, (6; X)
Ey { {T} } =—Ly {T for all 0 € Dy CR. (2.9)

Corollary 2.1. The variance of the score function has the following
eTpresion :
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Var[U(0; X)| =Var {%%,;(Q,X)] = (2.10)
B dlog L,(0;X) 0log L,,(0;X)]
— B, { S - (2.11)
B 9*log L,(6;X)] . .
_—9[ 50007 }zfeeDgc]R,k>1, (2.12)
respectively
Var[U(0;X)] =Var [810%:;(6,}()] = (2.13)

2 .
_ g [8 log L,,(0; X)

502 1 ifoeDyCR, k=1 (2.14)

Definition 2.2. The quantity

o= b {[2 0] FTOnIA) ae ay

“+oo

where 8 € Dy C R, represents the Fisher information which measures the
in formation about the univariate unknown parameter 6 which is contained
i an observation of the random variable X.

Definition 2.3. The quantity 1,(0), defined by the relation

1,(0) = E, { {MLg—ée;X)r} - / {M%—ern(G;x)dx — (2.17)
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where 6 € Dy C R, represents the Fisher information measure which
measures the information about univariate unknown parameter 6 contained

in a random sample S,(X) = (X1, X, ..., Xp).

Remark 2.3. The Fisher information has several good properties,
namely:

1° — non — negativity, i.c., I(X;60) > 0 and is 0 only when f(X;0) is
free of 0,

O — additivity and subadditivity, i.c., I(X,Y;0) < I(X;0) + I(Y;0),

with equality if X, Y are independent;

3" — maximal information, i.c., I[T(X);0] < I(X;60) for any statistic
T, and equality holds if and only if T(X) is suf ficient;

4° — convexity, i.c., if X; has probability density function f;, i = 1,2,
and Y has probability density function f(y) = afi(z) + (1 —a)fo(x); 0 <
a <1, then I(Y;0) < oI(Xy;0) + (1 — a)I(X5;0).

3. Exponential family and Fisher information

3.1. Exponential dispersion family

The early development of exponential dispersion models is often attributed
to Tweedie, M.C.K. (1947) although a more thorough and systematic investi-
gation of its statistical properties was done by Jorgensen, B. (1997).

Definition 3.1. T'he random variable X is sed to belong to the Exponential
Dispersion Family (EDF) of distribution if its probability measure Py is
absolutely continuous with respect to some measure (Qy and can represented
as

f(z;0,\) = exp{ A0z — k(0)]} ¢p(x), z € S CR, (3.1.1)

where :

e the parameter 0 is named the canonical parameter,

0 € Dy={0ecR|k)|<o0};

e the parameter X is a dispersion (or index) parameter, A € D) = {\ |
A>0} =Ry;

e the function k(6) is named the cumulant function;

e the function gy(x) is the Radon — Nikodim derivative fo the measure

Qx, i.e,q\(x) = dQA > 0.
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The representation in (3.1.1) is called the reproductive form of EDF
and we shall denote by X ~ ED(#,\) for a random variable belonging to this

(3.1.2)

(3.1.3)

family.
Theorema 3.1.1. If X is a random wvariable distributed according to
Py x, then
= 1(0) = Ena(X) = [ af(ai6. 0o = K(0),
and
wxxyvaugziwwyzvmmw%
where

Var(p) = £"(0)

1s called the variance function and

0'2:

1
A
1s called the dispersion parameter.

(3.1.3a)

(3.1.3b)

Proof. If we consider the reproductive form of EDF then its cumulative

generating function can be derived as follows:

Kx(t) = log, E(e*") = log {/e”e’\[e’”k(a)]qA(:c)daz} =
s

~log, { / e{A[(9+t/A>xk(equ(x)dx} _
S

= log, { /S eAqA(@dx} :

Because the exponent A can be written as
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ia[fr5)e-s0)-
=\ <9+ >x+k(9+i)—k(9+§)—k(9)}:
Afr (o ) w0 2[00 Y eor(o4 )]

the above function Kx(t) can be expressed as
Kx(t) = log, { / AE(O+£)-KO) A0 e k(0] 5, (1 )dg;} _
S

= loge eA[k<9+;)_k(9)],/Se/\[(e'i';)x_k(9+§)}q>\(q;)dx =

& S

that is
Kx(t) = A {k (9 + ;) _ k(@)} (3.1.5)

and the moment generating function can be written as

My (t) = FOF5)FO] — oK), (3.1.6)
Using the relations (3.1.5), respectively (3.1.6), we obtain relations

aK(;(t) = % {)\ {k <9+ %) - k(e)} } —
= [k’ <6 + %) H =K (6 + %) , (3.1.5a)

PKx(t) t\ 1
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respectively relations

3Ma)§(t) - % lexp {Kx (8)}] = (9Ka);(t) exp {Kx ()} (3.1.62)
Tt [ e )] -
_ [a g;;(” + (8%@)) ] exp {Kx(£)} (3.1.6b)
Now, using the property
a”‘;—t"j(t) — B(X),r € {0,1,2, ..}, (3.1.7)

and the fact that Kx(0) = 0, from the last four relations, we get

=k (9 + 3)
t=0 A

that is, the mean of X has the form

DM (t)
ot

_ OKx(t)
Ot

t=0 t=0

h— B(X) =k (6). (3.18)
Also, we obtain
PMx(t)| o |OPKx(t) (0K x(t)” B
Tt:o_E(X)_[ ot +( ot >]t:0_
0?Kx(t)

L (9Ex®) 2
o |,_, ot
t=0

e )l ()

1 " / 2
= Sk (0)+ (K (6))",

that is, we have a new relation

t=0
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B(X2) = %k; (0) + (K (8))% = %k: (0) + 12, (3.1.9)

respectively relation

1 1
Var(X) = Xk” (0) = o*k" (0), where 0* = T (3.1.10)

Remark 3.1.1. Notice that we can view the mean p as a function of 0, i.e.,

pw=FEX)=r71(0)=F(0) (3.1.11)
so that

0=71"1(p). (3.1.12)

and if we define the unit variance function (or the variance function) as

Var(p) = k" (0) = k" [r7 1 (u)], (3.1.13)

then Var(X) can be represented as

Var(X) = oV (u), (3.1.10a)

where 02 = % is the dispersion parameter. Therefore, in the next, we will

can write that X ~ EDF(6,0?).

Remark 3.1.2. The interest in the EDF was given by Jorgensen, who out-
line the EDF as one of the main classes of dispersion models, which includes
most standard distribution families such that as Normal (an example of a sym-
metric distribution), Gamma, Inverse Gaussian (examples of non-symmetric
and no-negative defined distributions), for the absolutely continuous case, and
the Poisson, Binomial, and Negative Binomial for the discrete case.

Thus, if X ~ N(u,0?) is a normal random variable with mean p and
variance o2 then its probability density function can be written as
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One can easily see that it belongs to the additive EDF by choosing;:

1 1 1 1 2?2
=0, A= 0% k(0) = =12 = ~6% and = ).
p=0,A=~0%k(0) = 5p° = 507 and gx(z) QMGXP( 202)
(3.1.14a)

3.2 Fisher information in weighted distributions

Let X = (X3, Xy, ..., X;;,) be a sample from the population P = {F : 0 €
Dy}— a parametric family, where Dy is called the parameter space, Dy C R.
Standard inference procedures assume a such random sample from the pop-
ulation P with the probability density function f(z;6) for estimating the
parameter unknown 6.Using a weight function , w(x) > 0, to model ascertain-
ment bias, Fisher (1934) constructed a weighted distribution with a probability
density function f,(x) that is proportional to w(z)f(x;#). In this paper, we
study some properties of the Fisher information about the parameter 6 using
the observations obtained from some weighted distributions.

Definition 3.2.1.[1] I f the probability density function f(x;0) of the
random variable X belongs to the following exponential family of
distributions

f(z;0) = a(z).exp{0T(z) — C(0), 0 € Dy C R, (3.2.1)

then, using a known weight function, w(x;0) > 0, a random variable Y will
have a weighted distribution if its probability density function, denoted
by f“(y;0), has the form

Petw) = | ] i) = (3:22)
_ [w(y;8).ay). exp{bT (y) — C(6)
= { Eow(X.0)] } ,0 € Dy CR, (3.2.3)
where the expectation Ep|w(X;0)] is assumed to exist, i.e.,
Eylw(X;0)] = /w(x;@)f(x;&)d:v < 00. (3.2.4)

0
The extension proof of the next theorem is based both on the above def-

inition, on the sketck which was presented in the paper [1] as well as on the

regularity conditions which was mentioned in the Remark 2.1 of this paper.
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Theorem 3.2.1.The Fisher information Ix(0) based on single
observation X, with the probability density function f(z;0), defined by the
relation

d*1 X0
Ix(0) = —E, [%} , (3.2.5)
can be expressed in the form
CO) _
Ix(0) = ST c(0), (3.2.6)

respectively in the form

d? d?

Iy(0) =Ix(0) + 02 {log Ey[w(X;0)]} — Ey {W [logy w(Y; 9)]} . (3.2.7)
i the case of the random wvariable X, where Ey represents expectation
with respect to the distribution determined by 6.

Proof. Indeed, from (3.2.1), we obtain relation

log f(x;0) =loga(x) + 60T (z) — C(0), 6 € Dy C R, (3.2.8)
respectively, relations
d

ux(6) = 45 log f(x:6)] = T(x) ~ C'(9) (3.2.50)
and

L (6)) = -2 flog £ (z:0)] = ~C" (0 (3:2:80)

a0 Uux = 102 g J\T; = L.
which represent the first and the second derivative of the log-likelihood function
(3.2.1).

Then, using (3.2.5), from (3.2.8b), we get
d*log f(X;0)
—Ey [T = Ix(0 =C"(9). (3.2.8¢)

Analogous, using the probability density function f*“(y; ), defined in (3.2.3),
we obtain for the log-likelihood function the following form
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log f*“(y; 0) = logw(y; 0) +loga(y) + 0T (y) — C(0) — log Ep[w(X;0)]. (3.2.9)

Also, the first and the second derivatives of this function can be expressed

as

uy () = d% [log f*“(y; 0)] =

- 55 logw(u:0) + T(3) = C'(0) = 7 {log Ey [w((X:0))

and

&y (0)] = L flog £(:6)] =

2

= =gz llog w(y; 0)] = C"(9) -

& o By w(x:0)]}.

Now, using this last relation, one can easily see that

~Eo{ Gl )} = B { 5 o 7 e0) = 1v(0) -

(3.2.9a)

(3.2.9b)

~ O+ B | G tog Ealuxio} | - £ {2 oguvio] | -
Ix(0) g

a constant
2

= Ix(0) + CZ% {log Ep [w(X;0)]} — Ey {502 log w(Y; 9)]}

that is, the property (3.2.7) is holds.
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