
Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics – ICTAMI 2003, Alba Iulia

255

EVOLUTIONARY ALGORITHMS FOR SQL QUERIES

by
Monica Chiş

Abstract: Data mining is defined as the process of discovering patterns in data. The most
common tasks of data mining are feature extraction, feature selection, classification and
clustering. Evolutionary algorithms are randomized search procedures inspired by the
mechanics of genetics and natural selection. Evolutionary algorithms are often used as
optimization algorithms, and this is the role that they play in most data mining applications. In
this paper a new technique for data mining using evolutionary algorithms is proposed.
Evolutionary algorithms are among standard modern instruments for data mining and thus they
are included in this paper. Our paper presents a methodology for applying the principles of
evolutionary computation to knowledge discovery in databases by using SQL queries that
describe datasets. The first step in applying an evolutionary algorithm to solve a problem is to
find a representation for candidate problem solutions. In this paper, we work with the general
form of the SELECT statement and we try to realize combination between evolutionary
algorithms and SQL queries. The proposed approach finds a new representation for SQL
queries to allow application of an evolutionary algorithm to evolve them for explore the entire
databases. Another issue of this paper is the fitness function to apply evolutionary pressure to
the queries, to guide them towards the correct classification rules. The starting point for the
considerations presented in this paper is the possibility of explores completely a databases or a
table in a databases.

1. Introduction

 The large amount of data stored in databases contains valuable hidden
knowledge, which could be used to improve the decision-making process of an
organization. For this reason, it is necessary to improve the methods for analyzing
data. Data mining is an interdisciplinary field, using methods of several research areas
(specially machine learning and statistics) to extract high-level knowledge from real-
world data sets. Data mining is the core step of a broader process, called knowledge
discovery in databases, or knowledge discovery, for short. This process includes the
application of several preprocessing methods aimed at facilitating the application of
the data mining algorithm and post processing methods aimed at refining and
improving the discovered knowledge ([6]).

This paper discusses the use of evolutionary algorithms in data mining and
knowledge discovery. Data mining consists of the efficient discovery of knowledge
from databases. This paper presents a new evolutionary for discovering a few
interesting information from databases. Particularly our 2 approach proposed a new
method for evolving SQL queries. We proposed codification for WHERE statement in
SQL a command.

We take the word “databases” as referring to large datasets (at least tens of
thousands of tuples) maintained in a DBMS. Due to the very large amount of data,

Monica Chiş - Evolutionary algorithms for SQL queries

 256

these databases must be accessed through efficiently executed DB queries (expressed
in SQL in the case of relational databases).

Data mining is defined as the process of discovering patterns in data. The
process must be automatic or (more usually) semi-automatic. The patterns discovered
must be meaningful in that they lead to some advantage, usually economic advantage.
The data is invariably present in substantial quantities. ([13])

SQL – Structured Query Language is an ANSI (American National Standards
Institute) standard computer language for accessing and manipulating database
systems. SQL statements are used to retrieve and update data in a database. SQL
works with database programs like MS Access, DB2, Informix, MS SQL Server,
Oracle, Sybase, etc. There are many different versions of the SQL language, but to be
in compliance with the ANSI standard, they must support the same major keywords in
a similar manner (such as SELECT, UPDATE, DELETE, INSERT, WHERE, and
others). Most of the SQL database programs also have their own proprietary
extensions in addition to the SQL standard.

SQL provides full database functionality. A main attraction of SQL lies in its
usage flexibility and inter-operability. SQL allows a user to express a query, without
the need to specify how the query is actually processed. The Structured Query
Language offers database users a powerful and flexible data retrieval mechanism such
as the SELECT statement.

The next section of our paper described all the preparation necessary for
applying the proposed evolutionary algorithm and the general task about SQL that are
used in our approach.

2. SQL queries

This paper proposed a new evolutionary representation for the general form of
the SELECT statement. Our goal is to realize a combination between evolutionary
algorithms and SQL queries. A database most often contains one or more tables. Each
table is identified by a name. Tables contain records (rows) with data. With SQL, we
can query a database and have a result set returned. SQL (Structured Query Language)
is syntax for executing queries. But the SQL language also includes syntax to update,
insert, and delete records. These query and update commands together form the Data
Manipulation Language (DML) part of SQL:

SELECT - extracts data from a database table

UPDATE - updates data in a database table.3

DELETE - deletes data from a database table

INSERT INTO - inserts new data into a database table

Our approach works with SELECT Command. The general form of the SELECT
statement appears below:

Monica Chiş - Evolutionary algorithms for SQL queries

 257

SELECT select_list
FROM source
WHERE condition(s)
GROUP BY expression
HAVING condition
ORDER BY expression
The first line of the statement tells the SQL processor that this command is a

SELECT statement and that we wish to retrieve information from a database. The
select_list allows us to specify the type of information we wish to retrieve. The FROM
clause in the second line specifies the specific database table(s) involved and the
WHERE clause gives us the capability to limit the results to those records that meet
the specified condition(s). The final three clauses represent advanced features outside
the scope of this article we'll explore them in future article.

In our paper the conditions clause is considered. In our approach an
evolutionary algorithm is used for representing condition clauses. Consider that each
field in a table (each attribute) could be part of the condition statement. In this paper
we consider that a field could appear many times.

2. Solution representation for SQL queries

First of all, for applying our evolutionary algorithm it is necessary do some
transformation in our data set. Consider that all data set are stored in a table. Each
field will be indexing, using a unique index. In this way we obtain all the possible
valued for a field in our data set. All of these possible values are encoded with a value
from 1 to the total number of unique values for that field. All this preparations is made
by a Relational Databases Management System and gives the value domains of our
representation.

Our approach gives the possibility to explore completely a table included in a
database. The proposed approach finds a representation for SQL queries to allow
application of an evolutionary algorithm to evolve them for explore the entire data in
the tables. Another issue of this paper is the fitness function to apply evolutionary
pressure to the queries, to guide them towards the correct classification rules.

In our fist approach of this problem we proposed a representation for SQL
queries in which the chromosome length is constant and is equal with 2p-1, where p is
the total number of field in the table.

In this paper we proposed a different approach for chromosome representation.
Genotypes were required to encode the list of conditional constraints that specify the
criterion by which records should be selected. Each conditional constraint in SQL
follows the structure

[attribute name] [logical operator] [value].
Each condition clauses in SQL queries could be composed of one or more

structured of this form.

Monica Chiş - Evolutionary algorithms for SQL queries

 258

Each of this structured could be linked by a logical operator and or or. For
representing the chromosome it is necessary to encode the conditional constraint in
SQL follows the structure

[attribute name] [logical operator] [value].
Our approach proposed for this structure a special representation. According

to the proposed order for input dataset this numerical representation respects some
specific requirements.

The chromosome length is not constant. We consider the chromosome length
a parameter of our algorithm. We denote by l the parameter chromosome length. l
could be a value between 3 and 2*p-1, where p is the maximum fields number of
analyzing table.
An individual is represented as a vector:

c= (c1, c2, …cl)
where cj is a string which takes different values if is in an odd or in an even position.

Because of the logical operator that links the conditions all the chromosome
length will be an odd number. There is a difference between a gene in an odd positions
and a gene in an even positions. Each gene in an odd position of our proposed
representation of an individual represents a condition of the structure

[attribute name] [logical operator] [value].
Each gene in the odd position has three parts first represent the fields number

which enter the condition, the second represent the logical operator an the third
represent the encoding for the field possible value. All these parts are separated by
“$”. Each gene in an odd position and has the form listed below:

g1$g2$g3,
where
g1 is an integer number which represent the number of field which enter the condition;
g2 is an integer number which represent a codification of a logical operator which is
part of the condition;
g3 is the codification of the field value obtained after indexing each field in analyzing
table.
g3 takes one of the following values
1 for <
2 for =
3 for >
4 for <=
5 for >=
6 for <>

This value could be updated any time. We could add new codification for new
logical operator.

Each gene in the even positions in the proposed chromosome is given by:
• 1 if the logical operator that linked the conditions is and
• 0 if the operator is or.

Monica Chiş - Evolutionary algorithms for SQL queries

 259

For generating the chromosome first step is random generated of a number,
denoted by f, which represented the number of fields that enter the condition. Then the
chromosome length l is calculated with the relation

l= 2·f-l .
Generating a solution for our problem is a two-step process: first is generated

the length of the chromosome and then is generated the chromosome.
In the next section we consider an example of our approach for encoding

solution. We conside a very short number of records for our example.
Consider a table of databases, which has four fields (numeric and character type). The
entire table is described in Table 1.

Table 2 – 5 contains the encoding for each value of each field after an
operation of indexing using a unique index.

Consider the number of fields that are part of the condition of WHERE
statement of SELECT command is 3. Then the length of the chromosome is 5.
A condition of the form

Field1=1 or field1=3 and field2=’C’
has the representation listed below:

c=(1$1$1 2 1$1$3 1 2$1$3).

4. Fitness function

To realize a correct search it is necessary to compare the chromosome. For this
reason is important to find a function used for evaluating the chromosome.

Our proposed evolutionary algorithm is a special case of the evolutionary
algorithms. We consider the number of record that fulfilled the conditions gives by the
chromosome the fitness value.

Monica Chiş - Evolutionary algorithms for SQL queries

 260

Proposed approach considers that the greater number of record represents the
best the SQL queries because represent the entire data set.

5. Evolutionary Algorithm for SQL Queries

Using the proposed solution representation, an evolutionary algorithm is used
to evolve a population of SQL queries encoding with number. Search operators used
in proposed approach are crossover and mutation ([1], [2], [6]).

Mutation makes changes in conditions for a field or attribute and crossover
operator is important for entire dataset that is analyzed.

For selection we use tournament selection operator. Proposed algorithm
considers the uniform mutation and pm the mutation rate.

Proposed evolutionary algorithm uses uniform crossover operator but with
some considerations ([2]). Uniform crossover does not use a predefined crossover
points. For each genes of an offspring, a global parameter indicates the probability that
this gene should come from either the first of the second parent. Each position of an
offspring is calculated separately ([4]). We consider as well the one point crossover
operator.

For crossover it is necessary to use a special operator. We defined a SQL
crossover operator. This operator is used because of the chromosome length is not
constant.

If the crossover uses chromosomes with the same length then we use a general
uniform crossover operator. If the chromosomes that are recombined are of different
length then the offsprings could take the length of boat of them parents. For this case,
a parameter gives the value of the offspring length. This parameter is denoted by cl
and takes value between the less length and the great length of parents. After this is
established we apply the uniform crossover in special conditions. The part that is not
present will take value from the parent with the greater length.

The mutation probability stands for a parameter of our evolutionary algorithm.
Consider pm the mutation rate. For each gene of the chromosome population, a
uniform random number q is generated. If for the i-th gene, the condition m p q <is
fulfilled, that gene is selected for mutation.

Binary tournament selection is considered. Binary tournament selection
implies that two individuals directly compete for selection. Tournament selection used
is without reinsertion of the competing individuals into the original population.

Proposed Evolutionary Algorithm for SQL Queries (SQLEval) is outlined
below:
Evolutionary Algorithm for SQL Queries (SQLEval)

1. Indexing table fields successively and take the value (from 1 to the maximum
number of unique indexing record);

2. Initialize t = 0 (t is the population number).

Monica Chiş - Evolutionary algorithms for SQL queries

 261

3. Initialize the population P(t). For the first generation random initialization is
used. The chromosome length is calculating based on the number of fields in
the conditions. Each part of each gene takes value for his own domain. Apply a
procedure for transform the chromosome representation in SQL language for
evaluate the number of records, which satisfy the conditions. Evaluate P(t) by
using the fitness function.

while (termination condition not satisfied)
4. Apply binary tournament selection for P(t). P 1 is the set of the selected

solutions.
5. Individuals from P 1 entering the mating pool based on tournament selection.

Choose chromosomes from P 1 to enter the mating pool..7
6. Apply the crossover operator to the solutions from the mating pool. A new

intermediate population P 2 is obtained. Mutate solutions in P 2 offspring enter
the next generation P(t+1).

7. Set t = t + 1.
end while

The termination condition of our evolutionary algorithm is t=n, where n is a pre-

specified number of generations.
The algorithm keeps the best individual obtained up to each generation t. The

problem solution is the best individual obtained from the best individual of each
generation.

A procedure, which realizes the decoding, is used after applying the proposed
evolutionary algorithm. This procedure return the record specify by the best
chromosome.

6. Conclusions and further research

The importance of this paper is the new representation of the chromosome for
a SQL queries. We consider that the transformation or the operation that must be done
before applied the evolutionary algorithm are not very complicated and takes time but
could be efficiently.

Proposed approaches gives the possibility to know more about the records in
databases and to find the combination of conditions that is more representative for
analyzed dataset. The combinations of conditions more representative are that which
give the maximum number of records.

Further research will explore different fitness functions and the possibilities to
defined new genetic operators as well as the encoding for other clauses of SQL
SELECT statement.

Monica Chiş - Evolutionary algorithms for SQL queries

 262

7. References and bibliography

[1]. Bäck T., Fogel D.B., Michalewicz, Z, (1997), Handbook of Evolutionary

Computation, Oxford University Press, Oxford.
[2]. Dumitrescu, D., Lazzerini, B., Jain, L., and Dumitrescu, A., (2000), Evolutionary

Computation, C.R.C. Press, Boca Raton, FL.
[3]. Cantú-Paz, E., Kamath, C., (2001), On the use of evolutionary algorithms in data

mining, in Data Mining: A Heuristic Approach, H. A. Abbass, R.A. Sarker and
C. S Newton (Eds.), Idea Group Publishing.

[4]. Fayyad, U. M., Piatetsky-Shapiro, G. & Smyth, P., (1996), From data mining to
knowledge discovery: an overview, In: Fayyad, U.M., Piatetsky-Shapiro, G.,
Smyth, P. & Uthurusamy, R. (Eds.) Advances in Knowledge Discovery & Data
Mining, 1-34. Cambridge: AAAI/MIT.

[5]. Freitas, A.A., (2001), A survey of evolutionary algorithms for data mining and
knowledge discovery, Advances in evolutionary computation, A., Ghosh, S.,
Tsutsui, S. (Eds.), Springer-Verlag.

[6]. Goldberg, D.E., (1989), Genetic algorithms in search, optimization, and machine
learning, Reading, MA: Addison-Wesley..8

[7]. Han, J., Fu, Y., Wang, W., Koperski, K., Zaiane, O., (1996), DMQL: A data
mining query language for relational databases, Proceedings of the ACM
SIGMOD International Conference on Management of Data.

[8]. Holsheimer, M., and Siebes, A., (1994), Data mining: the search for knowledge in
databases, Report CS-R9406. Amsterdam, The Netherlands: CWI.

[9]. Kamath, C., (2001), On mining scientific data sets, Data Mining in Scientific and
Engineering Applications, Kluwer Academic Publishers, Norwell, MA.

[10]. Piatetsky-Shapiro, G., Frawley, W.J., (Eds.), (1991), Knowledge Discovery,
Databases Menlo Park, CA: AAAI.

[11]. Salim, M., Yao, X., (2002), Evolving SQL queries for data mining, Ideal 2002,
LNCS 2412, H. Yin et al. (Eds.), pp.62-67.

[12]. Witten, I., Frank, E., (2000), Data Mining, Morgan Kaufmann Publisher.

Author:

Monica Chiş, Ph.D. Student at Faculty of Mathematics and Computer
Science, Department of Computer Science, Babeş-Bolyai University,
Cluj-Napoca, Romania, Faculty of Applied Sciences, Avram-Iancu
University, Cluj-Napoca, Romania, mchis@artelecom.net

