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SOLVING BRACHISTOCHRONE PROBLEM USING HOMOTOPY
ANALYSIS METHOD
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Abstract. In this work, analytical technique, is applied to obtain an approxi-
mate analytical solution of the brachistochrone problem. The main objective is to
find the solution of an brachistochrone problem. This work is done using homotopy
analysis method. The method is general, easy to implement, and yields very accu-
rate results with few computations. The homotopy analysis method contains the
auxiliary parameter ~ , which provides us with a simple way to adjust and control
the convergence region of solution series.
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1. Introduction

In the large number of problems arising in analysis, mechanics, geometry, and so
forth, it is necessary to determine the maximal and minimal of a certain functional.
Because of the important role of this subject in science and engineering, considerable
attention has been received on this kind of problems. such problems are called
variational problems.
The problem of brachistochrone is proposed in 1696 by Johann Bernoulli which is
required to find the line connecting two certain points A and B that do not lie on
a vectorial line and possessing the property that a moving particle slides down this
line from A to B in the shortest time. This problem was solved by Johann Bernoulli,
Jacob Bernoulli, Leibnits, and Newton. It is shown that the solution of this problem
is a cycloid. The solution of the brachistochrone problem is often cited as the origin
of the calculus of variations as suggested in [23].

The classical brachistochrone problem deals with a mass moving along a smooth
path in a uniform gravitational field. A mechanical analogy is the motion of a
bead sliding down a frictionless wire. The solution to thus problem was obtained
by various methods such as the gradient method [2], successive sweep algorithm in
[1,3] the classical Chebyshev method [24], multistage Monte Carlo method [21] and
legendre wavelet method [19].
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More historical commens about variational problems are found in [7,8].
The simplest form of a variational problem can be considered as

v[y(x)] =

∫ x1

x0

F (x, y(x), y′(x))dx, (1)

where v is the funvtional that its extremum must be found. To find the extreme
value of v, the boundary points of the admissible curves are known in the following
form:

y(x0) = α, y(x1) = β. (2)

One of the popular methods for solving variational problems are direct methods.
In these methods the variational problem is regarded as a limiting case of a finite
number of variables. The direct method of Ritz and Galerkin has been investigated
for solving variational problems in [7,8]. Chen and Hsiao [5] introduced the Walsh
series method to variational problems. Due to the nature of the Walsh functions, the
solution obtained was piecewise constant. Some orthogonal polynomials are applied
on variational problems to find continuous solutions for these problems [4, 10, 11].
Also Fourier series and Taylor series are applied to variational problems,respectively
in [17], to find a continuous solution for this kind of problems. Other authors intro-
duced the Legendre wavelets method [18], ratinalized Haar method [16], Adomian
decomposition method [5], He s variational iteration method [22] and Chebyshev
finite difference method for solving variational problems [20]. More historical com-
ments about variational problems are found in [7,8].

In this paper, we consider homotopy analysis method for finding approximate
solution of brachistochrone problem which is a famous problem in calculus of varia-
tions.
In 1992, Liao employed the basic ideas of the homotopy in topology to propose a gen-
eral analytic method for nonlinear problems, namely homotopy analysis method(HAM).
This method has been successfully applied to solve many types of nonlinear problems
by others [13, 14, 15].

In this paper, the basic idea of the HAM is introduced and then is applied to
solve the brachistochrone problem. Also, the comparison is made with the exact
solution. The homotopy analysis method contains the auxiliary parameter ~, which
provides us with a simple way to adjust and control the convergence region of solution
series.

The outline of this paper is as follows: In section 2, we introduce the homotopy
analysis method. In section 3, we introduce the brachistochrone problem. In section
4, the propose method is used brachistochrone problem to approximate the solution
of the problem. As a result, the solution of the considered problem is introduced.
Then we report our computational results and demonstrate the accuracy of the
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proposed numerical scheme by comparing our results with results obtained using
other methods.

2.Homotopy analysis method

To describe the basic ideas of the HAM, we consider the following differential equa-
tion:

N [u(x, t)] = 0, (3)

where N is a nonlinear operator, u(x, t) is an unknown function and x and t denote
spatial and temporal independent variables, respectively.
By means of generalizing the traditional homotopy method, (see Liao [13])

(1− p)L[φ(x, t; p)− u0(x, t)] = p~N [φ(x, t; p)] (4)

where p ∈ [0, 1] is an embedding parameter, ~ is a nonzero auxiliary parameter,
L is an auxiliary operator, u0(x, t) is an initial guess of u(x, t) and φ(x, t; p) is an
unknown function. It is important to note that we have great freedom to choose
auxiliary objects such as ~ and L in HAM. Obviously, when p = 0 and p = 1, it
holds

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t) (5)

respectively. Thus, as p increases from 0 to1, the solution φ(x, t; p) varies from the
initial guess u0(x, t) to the solution u(x, t). Expanding φ(x, t; p) in Taylor series whit
respect to p, one has

φ(x, t; p) = u0(x, t) +
∞∑

m=1

um(x, t)pm, (6)

where

um(x, t) =
1

m!

∂mφ(x, t; p)

∂pm
|p=0. (7)

If the auxiliary linear operator, the initial guessand the auxiliary parameter ~ and
the auxiliary function are so properly chosen, then, as proved by [14], the series (6)
converges at p = 1 and one has

u(x, t) = u0(x, t) +

∞∑
m=1

um(x, t), (8)

which most be one of solutions of the original nonlinear equation, as proved by [13].
As ~ = 1, Eq. (4) becomes

(1− p)L[φ(x, t; p)− u0(x, t)] + pN [φ(x, t; p)] = 0, (9)
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which is used in the homotopy perturbation method [9].
According to the definition(7), the governing equation of can be deduced from the
zero-order deformation equation (4). Define the vector

−→un = {u0(x, t), u1(x, t), ..., un(x, t)} .

Differentiating Eq. (4) m times with respect to the embedding parameter p and
then setting p = 0 and finally dividing them by m!, we have the so-called mth-order
deformation equation,

L[um(x, t)− χmum−1(x, t)] = ~<m[−→u m−1(x, t)], (10)

where

<(−→u m−1) =
1

(m− 1)!

∂m−1N [φ(x, t; p)]

∂pm−1
|p=0, (11)

and

χm =

{
0, m ≤ 1,
1, m ≥ 2.

(12)

It should be emphasized that um(x, t) for m ≥ 1 is governed by the linear equa-
tion (10) with the linear boundary conditions that come from the original problem,
which can be easily solved by symbolic computation software such as Maple and
Mathematica.

3.The Brachistochrone Problem

One of the classical problems in calculus of variations is brachistochrone problem,
that may be formulated as follows [6].

Minimize the performance index J ,

J =

∫ 1

0

[
1 + U2(t)

1−X(t)

] 1
2

dt (13)

subject to
Ẋ(t) = U(t) (14)

with
X(0) = 0, X(1) = −0.5. (15)

Equations (13),(14) and (15) describe the motion of a bead sliding down a frictionless
wire in a constant gravitational field. The minimal time transfer expression (13) is
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obtained from the law of conservation of energy. As is well known, the exact solution
to the brachistochrone problem is the cycloid defined by the parametric equations

X = 1− β

2
(1 + cos 2θ), t =

t0
2

+
β

2
(2θ + sin 2θ),

where
tan θ = Ẋ(t) = U.

With the given boundary conditions, the integration constants are found to be

β = 1.6184891,

t0 = 2.7300631.

With attention to the general form of the calculus of variations problem, in the
spatial case

J [y(x)] =

∫ b

a
f(x, y)

√
1 + y′2dx

the Euler-Lagrange equation is

fy − fxy′ − f
y′′

1 + y′2
= 0.

Thus, the Euler-Lagrange equation of the brachistochrone problem is written in the
following form:

U ′ = −1

2

1 + U2

X − 1
.

4.The homotopy analysis method for Solving the brachistochrone
problem

To solve Eq. (13) by means HAM, we choose the initial approximation

u0(t) = −1

2
t. (16)

Eq. (13) sugestes the nonlinear operator as

N [φ(t; q)] = φ(t; q)
∂2φ(t; q)

∂t2
− ∂2φ(t; q)

∂t2
+

1

2
(
∂φ(t; q)

∂t
)2 +

1

2
(17)

and the linear operator

L[φ(t; q)] =
∂2φ(t; q)

∂t2
, (18)
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with the property
L(c1t+ c2) = 0,

where c1 and c2 are the integration constants. Using the above definitions, we
construct the zeroth-order deformation equation

(1− q)L[φ(t; q)− u0(t)] = p~N [φ(t; q)]. (19)

where q ∈ [0, 1] is an embedding parameter, ~ is a nonzero auxiliary parameter,
L is an auxiliary linear operator, u0(t) is an initial guess of u(t) and φ(t; q) is an
unknown function. Obviously, when q = 0 and q = 1,

φ(t; 0) = u0(t), φ(t; 1) = u(t).

Therefore, as the embedding parameter q increases from 0 to 1, φ(t; q) varies from the
initial guess u0(t) to the solution u(t). Then, we obtain the mth-order deformation
equation

L[um(t)− χmum−1(t)] = ~<m[−→u m−1(t)], (20)

subject to initial condition
um(0) = 0,

where

<m(−→u m−1) = −∂
2um−1(t)

∂t2
+

1

2
(1−χm)+

m−1∑
j=0

[uj(t)
∂2um−1−j(t)

∂t2
]+

1

2

m−1∑
j=0

[
∂uj(t)

∂t

∂um−1−j(t)

∂t
]

(21)
Now, the solution of the mth-order deformation equation (20) for m ≥ 1 becomes

um(t) = χmum−1(t) + ~L−1[<m(−→u m−1)], (22)

From (16) and (20) we now successively obtain

u0(t) = −1
2 t,

u1(t) = 5
16~t

2 − 5
16~t,

u2(t) = − 5
192~t(t− 1)(4~t+ 13~− 12),

u3(t) = 5
3072~t(t− 1)(44~2t2 + 116~2t− 128~t− 416~ + 223~2 + 192),

u4(t) = − 1
36864~t(t− 1)(1896~3t3 − 7920~2t2 + 7056~3t2 − 20880~2t+ 11520~t
+9116t~3 + 37440~− 40140~2 − 11520 + 14141~3),

and so on. we find the approximated solution as

uapp =
n∑

i=0

ui. (23)
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Figure 1: The ~-curve of ut(0, 0) given by 6th-order HAM approximation solution.

For example for n = 6 we have,

uapp = − 1
24772608 t(12386304− 142541280~4 − 46448640~t+ 38707200~2t2 − 125798400~2
+59125752~5 + 52012800~4t3 + 20764800~4t2 + 87091200~2t− 35481600~3t3
−58060800~3t2 − 18694872t~5 + 877440~6t6 + 3375960~6t5 + 4623696~6t4

+3027360~6t3 − 5595716~6t2 + 3659019t~6 + 50652000t~4 − 6189120~5t5
−19656000~5t4 − 24020640~5t3 + 9434880~5t2 + 179827200~3 + 19111680~4t4
−86284800t~3 − 9967759~6 + 46448640~).

To investigate the influence of ~ on the solution series, we plot the so-called ~-curve
ut(0, 0) obtained from the 6th-order HAM approximation solution as shown in Fig.
1. According to this ~-curve, it is easy to discover the valid region of ~ which
corresponds to the line segment nearly parallel to the horizontal axis. From Fig. 1
it is clear that the series of ut(0, 0) is convergent when 0.5 < ~ < 1.5.

In Table 1, the results for proposed method with N = 6, 8, 11, 15 and ~ = 1
are listed. We compare the solution obtained using the proposed method with other
solutions in the literature together with the exact solution. Table 2 shows the results
for proposed method for different values of ~ with N = 8.
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Table 1: The homotopy analysis method for ~ = 1 and other solution in the literature

Methods X(1) U(0) J

Dynamics programming Gra-
dient method [2]

−0.5 −0.7832283 0.9984988

Dynamics programming Suc-
cessive sweep method [1,3]

−0.5 −0.7834292 0.9984989

Chebyshev solution[24]
M = 4 −0.5 −0.7844893 0.9984982

Legendre wavelet method[19]
k = N = 2, s = 5,M = 5 −0.5 −0.7864402 0.9984981

Legendre cardinal method [7]
N = 6 −0.5 −0.7863535 0.99849814831

Homotopy analysis method
N = 6 −0.5 −0.78637086 0.99849817145
N = 8 −0.5 −0.78643798 0.99849814965
N = 11 −0.5 −0.78644059 0.99849814883
N = 15 −0.5 −0.78644078 0.99849814883

Exact solution [3] −0.5 −0.7864408 0.99849814829

Table 2: The homotopy analysis method for different values of ~ with N = 8

~ 0.5 0.75 0.86 1 1.2 1.5

U(0) −0.7859236 −0.7864398 −0.7864408 −0.78643798 −0.7861958 −0.7967967
J 0.99849943 0.99849963 0.99849970 0.99849814 0.99849162 1.00304829

5.Conclusion
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The homotopy analysis method is considered to find the approximate solution of the
brachistochrone problem. The method is easy to implement and yields very accurate
results.
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