UNIVALENCE OF TWO INTEGRAL OPERATORS

Virgil Pescar

ABSTRACT. In this work we derive sufficient conditions for the univalence of two integral operators $H_{\alpha,\beta}$ and G_{α} .

2000 Mathematics Subject Classification: 30C45.

Key Words and Phrases: Integral operator, Univalence.

1. Introduction

We consider the unit open disk $\mathcal{U}=\{z\in\mathbb{C}:|z|<1\}$ and \mathcal{A} the class of the functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk \mathcal{U} .

Let S denote the subclass of A, consisting of the functions $f \in A$, which are univalent in U.

We consider the integral operators

$$H_{\alpha,\beta}(z) = \left[\beta \int_0^z u^{\beta-1} \left(\frac{g(u)}{u} \right)^{\frac{1}{\alpha}} du \right]^{\frac{1}{\beta}}, \tag{1}$$

and

$$G_{\alpha}(z) = \left[\alpha \int_{0}^{z} (h(u))^{\alpha - 1} du \right]^{\frac{1}{\alpha}}, \tag{2}$$

for $g, h \in \mathcal{A}$ and α, β be complex numbers, $\alpha \neq 0, \beta \neq 0$.

In [3] Pescar has studied the univalence of these integral operators.

In the present paper, we obtain new univalence conditions for the integral operators $H_{\alpha,\beta}$, G_{α} to be in the class \mathcal{S} .

2. Preliminary results

We need the following lemmas.

Lemma 1 (2). Let α be a complex number, $Re \ \alpha > 0$ and $f \in \mathcal{A}$. If

$$\frac{1 - |z|^{2Re \,\alpha}}{Re \,\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1,\tag{3}$$

for all $z \in \mathcal{U}$, then for any complex number β , Re $\beta \geq Re \alpha$, the integral operator F_{β} defined by

$$F_{\beta}(z) = \left[\beta \int_0^z u^{\beta - 1} f'(u)\right]^{\frac{1}{\beta}} \tag{4}$$

is in the class S.

Lemma 2. (Schwarz [1]). Let f be the function regular in the disk $\mathcal{U}_R = \{z \in \mathbb{C} : |z| < R\}$ with |f(z)| < M, M fixed. If f(z) has in z = 0 one zero with multiply $\geq m$, then

$$|f(z)| \le \frac{M}{R^m} |z|^m, \ (z \in \mathcal{U}_R), \tag{5}$$

the equality (in the inequality (5) for $z \neq 0$) can hold only if

$$f(z) = e^{i\theta} \frac{M}{R^m} z^m,$$

where θ is constant.

3. Main results

Theorem 1. Let α be a complex number, Re $\alpha > 0$, M, L positive real numbers and the function $g \in \mathcal{A}$, $g(z) = z + a_2 z^2 + \ldots$

If

$$\left| \frac{z^2 g'(z)}{g^2(z)} - 1 \right| \le M, \quad (z \in \mathcal{U}), \tag{6}$$

$$|g(z)| \le L, \quad (z \in \mathcal{U}) \tag{7}$$

and

$$\frac{ML}{(Re\ \alpha+1)^{\frac{Re\ \alpha+1}{Re\ \alpha}}} + \frac{L+1}{Re\ \alpha} \le |\alpha|,\tag{8}$$

then for any complex number β , Re $\beta \geq Re \alpha$, the integral operator $H_{\alpha,\beta}$ defined by (1) is in the class S.

Proof. Let us consider the function

$$f(z) = \int_0^z \left(\frac{g(u)}{u}\right)^{\frac{1}{\alpha}} du, \quad (z \in \mathcal{U}). \tag{9}$$

The function f is regular in \mathcal{U} and f(0) = f'(0) - 1 = 0. We have

$$f'(z) = \left(\frac{g(z)}{z}\right)^{\frac{1}{\alpha}},$$

$$f''(z) = \frac{1}{\alpha} \left(\frac{g(z)}{z} \right)^{\frac{1}{\alpha} - 1} \frac{zg'(z) - g(z)}{z^2}, \quad (z \in \mathcal{U}),$$

$$\frac{zf''(z)}{f'(z)} = \frac{1}{\alpha} \left(\frac{zg'(z)}{g(z)} - 1 \right),$$

hence, we get

$$\frac{zf''(z)}{f'(z)} = \frac{1}{\alpha} \left[\left(\frac{z^2 g'(z)}{g^2(z)} - 1 \right) \frac{g(z)}{z} + \frac{g(z)}{z} - 1 \right],\tag{10}$$

for all $z \in \mathcal{U}$. From (10) we obtain

$$\frac{1 - |z|^{2Re \alpha}}{Re \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le \frac{1 - |z|^{2Re \alpha}}{|\alpha|Re \alpha} \left(\left| \frac{z^2 g'(z)}{g^2(z)} - 1 \right| \left| \frac{g(z)}{z} \right| + \left| \frac{g(z)}{z} \right| + 1 \right) \tag{11}$$

The function $p(z) = \frac{z^2 g'(z)}{g^2(z)} - 1$ has in z = 0, one zero with multiply m = 2 and for the function g(z) we have one zero with multiply m = 1.

So, from (6), (7) and Lemma 2 we get

$$\left| \frac{z^2 g'(z)}{g^2(z)} - 1 \right| \le M|z|^2, \quad (z \in \mathcal{U})$$
 (12)

and

$$|g(z)| \le L|z|, \quad (z \in \mathcal{U}).$$
 (13)

From (12), (13) and (11) we obtain

$$\frac{1 - |z|^{2Re \alpha}}{Re \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le \frac{1 - |z|^{2Re \alpha}}{|\alpha|Re \alpha} |z|^2 ML + \frac{1 - |z|^{2Re \alpha}}{|\alpha|Re \alpha} (L+1), \quad (z \in \mathcal{U}) \quad (14)$$

Since

$$\max_{|z| \le 1} \left[\frac{1 - |z|^{2Re \,\alpha}}{Re \,\alpha} |z|^2 \right] = \frac{1}{\left(Re \,\alpha + 1 \right)^{\frac{Re \,\alpha + 1}{Re \,\alpha}}},\tag{15}$$

from (8), (15) and (14), we obtain

$$\frac{1 - |z|^{2Re \,\alpha}}{Re \,\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \quad (z \in \mathcal{U})$$
 (16)

and hence, by Lemma 1, it results that the integral operator $H_{\alpha,\beta}$ belongs to the class S.

Theorem 2. Let α be a complex number, $Re \ \alpha > 0$, M, L positive real numbers and the function $h \in \mathcal{A}$, $h(z) = z + a_2 z^2 + \dots$

$$\left| \frac{z^2 h'(z)}{h^2(z)} - 1 \right| \le M, \quad (z \in \mathcal{U}), \tag{17}$$

$$|h(z)| \le L, \quad (z \in \mathcal{U})$$
 (18)

and

$$|\alpha - 1| \left[\frac{ML}{(Re \ \alpha + 1)^{\frac{Re \ \alpha + 1}{Re \ \alpha}}} + \frac{L + 1}{Re \ \alpha} \right] \le 1, \tag{19}$$

then the integral operator G_{α} , defined by (2) belongs to the class S.

Proof. From (2) we have

$$G_{\alpha}(z) = \left[\alpha \int_{0}^{z} u^{\alpha - 1} \left(\frac{h(u)}{u} \right)^{\alpha - 1} du \right]^{\frac{1}{\alpha}}.$$
 (20)

We consider the function

$$f(z) = \int_0^z \left(\frac{h(u)}{u}\right)^{\alpha - 1} du. \tag{21}$$

The function f is regular in \mathcal{U} . From (21) we obtain

$$f'(z) = \left(\frac{h(z)}{z}\right)^{\alpha - 1}, \quad f''(z) = (\alpha - 1)\left(\frac{h(z)}{z}\right)^{\alpha - 2} \frac{zh'(z) - h(z)}{z^2}$$

We get

$$\frac{1 - |z|^{2Re \, \alpha}}{Re \, \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le$$

$$\leq |\alpha - 1| \frac{1 - |z|^{2Re \, \alpha}}{Re \, \alpha} \left(\left| \frac{z^2 h'(z)}{h^2(z)} - 1 \right| \frac{|h(z)|}{|z|} + \frac{|h(z)|}{|z|} + 1 \right), \tag{22}$$

for all $z \in \mathcal{U}$. By (17), (18), Lemma 2 we obtain

$$\left| \frac{z^2 h'(z)}{h^2(z)} - 1 \right| \le M|z|^2, \quad (z \in \mathcal{U}),$$

$$|h(z)| \le L|z|, \quad (z \in \mathcal{U}),$$

hence, by (22) we have

$$\frac{1-|z|^{2Re\,\alpha}}{Re\,\alpha}\left|\frac{zf''(z)}{f'(z)}\right| \le |\alpha-1|\left[\frac{1-|z|^{2Re\,\alpha}}{Re\,\alpha}|z|^2ML + \frac{1-|z|^{2Re\,\alpha}}{Re\,\alpha}(L+1)\right],\quad(23)$$

for all $z \in \mathcal{U}$.

Since

$$\max_{|z| \le 1} \left[\frac{1 - |z|^{2Re \, \alpha}}{Re \, \alpha} |z|^2 \right] = \frac{1}{(Re \, \alpha + 1)^{\frac{Re \, \alpha + 1}{Re \, \alpha}}} \quad ,$$

from (19) and (23) we get

$$\frac{1 - |z|^{2Re \alpha}}{Re \alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \quad (z \in \mathcal{U}).$$
 (24)

We have $f'(z) = \left(\frac{h(z)}{z}\right)^{\alpha-1}$ and now, by Lemma 1 and (24), for $\beta = \alpha$ we obtain that the integral operator G_{α} is in the class \mathcal{S} .

References

- [1] Mayer, O., The Functions Theory of One Variable Complex, Bucureşti, 1981.
- [2] Pascu, N. N., An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow (Braşov), Preprint (1987), 43-48.
- [3] Pescar, V., New Univalence Criteria, Monograph, "Transilvania" University's Publishing House, Braşov, 2002, Romania.

Virgil Pescar Department of Mathematics "Transilvania" University of Braşov Faculty of Mathematics and Computer Science 500091 Braşov, Romania email: virgilpescar@unitbv.ro