SPACES OF STRONGLY ALMOST SUMMABLE DIFFERENCE SEQUENCES

No. 28/2011

pp. 261-270

VAKEEL A. KHAN

ABSTRACT. The purpose of this paper is to introduce the concept of $\triangle^m_{v\lambda}$ strongly almost convergence with respect to a sequence of moduli and $\triangle^m_{v\lambda}$ - Almost Statistical Convergence and give some relations between these two kinds of convergence.

2000 Mathematics Subject Classification: 40A05,40C05, 46A45.

Keywords: Difference sequence space, de la Vallee-Poussin, satistical convergence, Sequence of moduli.

1. Introduction

Let ω denote the set of all real sequences $x=(x_k)$. Let l_{∞} , c and c_0 be the Banach spaces of bounded, convergent and null sequences $x=(x_k)$ normed by as usual by $||x||_{\infty}=\sup_k |x_k|$. Kizmaz [19] defined the sequence spaces:

$$l_{\infty}(\triangle) = \{x = (x_k) : (\triangle x_k) \in l_{\infty}\},$$

$$c(\triangle) = \{x = (x_k) : (\triangle x_k) \in c\},$$

and

$$c_0(\triangle) = \{x = (x_k) : (\triangle x_k) \in c_0\},\$$

where $\Delta x_k = (x_k - x_{k+1})$. These are Banach spaces with the norm

$$||x||_{\triangle} = |x_1| + ||\triangle x||_{\infty}.$$

Difference sequence spaces have been studied by Colak and Et [1], Et [6,7], Et and Esi [8], Vakeel A. Khan [14,15,16,17] and many others.

A sequence $x \in l_{\infty}$ is said to be almost convergent [23] if all Banach limits of x coincide. Lorentz [23] defined that

$$[c^{\wedge}] = \left\{ x \in w : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} x_{k+j} \text{ exists, uniformly in } j \right\}.$$

Many authors including Lorentz [23] , Duran [4], and King [18] have studied almost convergent sequence spaces. Maddox [24,26] has defined x to be strongly almost convergent to a number L if

$$\lim_{n} \frac{1}{n} \sum_{k=1}^{n} |x_{k+j} - L| = 0, \quad \text{uniformly in j.}$$

By $[c^{\wedge}]$, we denote the space of all strongly almost convergent sequences. It is easy to see that

$$c \subset [c^{\wedge}] \subset c^{\wedge} \subset l_{\infty}.$$

The space of strongly almost convergent sequences was generalized by Nanda [27,28].

Let $p = (p_k)$ be a sequence of strictly positive real numbers. Nanda [27] defined

$$[c^{\wedge}, p] = \left\{ x \in w : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} |x_{k+j} - L|^{p_k} = 0, \quad \text{uniformly in } j \right\},$$

$$[c^{\wedge}, p]_0 = \left\{ x \in w : \lim_{n} \frac{1}{n} \sum_{k=1}^{n} |x_{k+j}|^{p_k} = 0, \quad \text{uniformly in } j \right\},$$

$$[c^{\wedge}, p]_{\infty} = \left\{ x \in w : \sup_{n,j} \frac{1}{n} \sum_{k=1}^{n} |x_{k+j}|^{p_k} < \infty, \quad \text{uniformly in } j \right\}.$$

Let $\lambda = (\lambda_n)$ be a non decreasing sequence of positive reals tending to infinity and $\lambda_1 = 1$ and $\lambda_{n+1} \leq \lambda_n + 1$. The generalized de la Vallee - Poussin means is defined by

$$t_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_-} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$.

A sequence $x=(x_k)$ is said to be (V,λ) - summable to a number l (see [22]) if $t_n(x) \to l$ as $n \to \infty$. We write

$$[V, \lambda]^0 = \left\{ x = (x_i) \in \omega : \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} |x_i| = 0 \right\},\,$$

$$[V, \lambda] = \left\{ x = (x_i) \in \omega : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} |x_i - le| = 0, \text{ for some } l \in \mathbb{C} \right\},\,$$

and

$$[V, \lambda]^{\infty} = \left\{ x = (x_i) \in \omega : \lim_{n} \frac{1}{\lambda_n} \sum_{k \in I_n} |x_i| < \infty \right\},$$

For the sets of sequences that are strongly summable to zero , strongly summable and strongly bounded by the de la Vallee - poussin mathod. In the special case when $\lambda_n = n$ for $n = 1, 2, 3, \cdots$ the sets $[V, \lambda]^0$, $[V, \lambda]$ and $[V, \lambda]^{\infty}$ reduce the sets w_0 , w_0 and w_{∞} introduced and studied by Maddox [25].

The concept of statistical convergence was first introduced by Fast [9] and also Schoenberg [31] for real and complex sequences. Further this concept was studied by Salat [30], Fridy [11], Fridy and C.Orhan [12], Connor [2], Connor, Fridy, and Kline [3], and many others.

Let $I\!\!N$ and $I\!\!C$ be the set of natural numbers and complex numbers , respectively . If $E\subseteq I\!\!N$, then the natural density of E (see Freedman and Sember [10]) is denoted by

$$\delta(E) = \lim_{n} \frac{1}{n} |\{k \le n : k \in E\}|,$$

where the vertical bars denote the cardinality of the enclosed set . The sequence x is said to be statistically convergent to L, denoted by $stat - \lim x = L$, if for every $\epsilon > 0$, the set

$$\{k: |x_k - L| \ge \epsilon, \}$$

has natural density zero. In this case we write $stat - \lim x_k = L$.

Let $X,Y \subset \ell^0$. Then we shall write

$$M(X,Y) = \bigcap_{x \in X} \quad x^{-1} \ast Y = \{a \in \ell^0 : ax \in Y \quad \text{for all} \quad x \in X\}.$$

The set

$$X^{\alpha} = M(X, l_1)$$

is called Köthe - Toeplitz dual space or α - dual of X(see [8]).

Let X be a sequence space . Then X is called

- (i) Solid (or normal), if $(\alpha_k x_k) \in X$, whenever $(x_k) \in X$ for all sequences of scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$.
- (ii) Symmetric, if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$, where $\pi(k)$ is a permutation of \mathbb{N} .
- (iii)Perfect if $X = X^{\alpha\alpha}$.
- (iv) Sequence algebra if $x.y \in X$, whenever $x,y \in X$.

It is well known that if X is perfect then X is normal (see [13]).

A function $f:[0,\infty)\to[0,\infty)$ is called a modular if

- 1. f(t) = 0 if and only if t = 0,
- 2. $f(t+u) \le f(t) + f(u)$ for all $t, u \ge 0$,
- 3. f is increasing, and
- 4. f is continuous from the right of 0.

Let X be a sequence space. Then the sequence space X(f) is defined as

$$X(f) = \{x = (x_k) : (f(|x_k|)) \in X\}$$

for a modulus f([25],[29]). Kolk[20],[21] gave an extension of X(f) by considering a sequence of moduli $F = (f_k)$ i.e.

$$X(F) = \{x = (x_k) : (f_k(|x_k|)) \in X\}$$

2. Main Results

Let $F = (f_k)$ be a sequence of moduli, $p = (p_k)$ be a sequence of positive real numbers and $v = (v_k)$ be any fixed sequence of non zero complex numbers and $m \in \mathbb{N}$ be fixed(see [5]). This assumption is made throughout the rest of this paper. Now we define the following sequence spaces:

$$[V, \triangle_{v^{\lambda}}^{m}, F, p] = \left\{ x \in \omega : \lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f_{k}(|\triangle_{v}^{m} x_{k+j} - L)|) \right]^{p_{k}} = 0, \right.$$

uniformly in j, for some L>0,

$$[V, \triangle_{v^{\lambda}}^{m}, F, p]^{0} = \left\{ x \in \omega : \lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f_{k}(|\triangle_{v}^{m} x_{k+j})|) \right]^{p_{k}} = 0, \text{ uniformly in } j \right\},$$

$$[V, \triangle_{v^{\lambda}}^{m}, F, p]^{\infty} = \left\{ x \in \omega : \lim_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f_{k}(|\triangle_{v}^{m} x_{k+j})|) \right]^{p_{k}} < \infty, \text{ uniformly in } j \right\},$$

where

$$\triangle_v^0 x_k = (v_k x_k), \quad \triangle_v x_k = (v_k x_k - v_{k+1} x_{k+1}), \quad \triangle_v^m x_k = (\triangle_v^{m-1} x_k - \triangle_v^{m-1} x_{k+1})$$

. and so that

$$\Delta_v^m x_k = \sum_{i=0}^m (-1)^i \begin{bmatrix} m \\ i \end{bmatrix} \quad v_{k+i} x_{k+i}.$$

$\triangle_{v^{\lambda}}^{m}$ - Almost Statistical Convergence

We define the following definition:

Definition. A sequence $x = (x_k)$ is is said to be $\triangle_{v\lambda}^m$ - almost statistically convergent to the number L provided that for every $\epsilon > 0$,

$$\lim_{n} \frac{1}{\lambda_n} |\{k \in I_n : |\triangle_{v^{\lambda}}^m x_{k+j}(x) - L| \ge \epsilon\}| = 0, \text{ uniformly in j.}$$

In this case we write $S(\triangle_{v^{\lambda}}^{m})$ - $\lim x = L$ or $x_k \to LS(\triangle_{v^{\lambda}}^{m})$ and In the case $\lambda_n = n$ we shall write $S(\triangle_v^m)$ instand of $S(\triangle_{v^{\lambda}}^m)$.

Theorem 2.1. Let $F = (f_k)$ be a sequence of moduli, then $[V, \triangle_{v\lambda}^m, F, p]$, $[V, \triangle_{v\lambda}^m, F, p]^0$ and $[V, \triangle_{v\lambda}^m, F, p]^{\infty}$ are linear spaces over the set of complex numbers \mathbb{C} . Proof. Omitted.

Theorem 2.2. Let $F = (f_k)$ be a sequence of moduli, then

$$[V, \triangle^m_{v^{\lambda}}, F, p]^0 \subset [V, \triangle^m_{v^{\lambda}}, F, p] \subset [V, \triangle^m_{v^{\lambda}}, F, p]^{\infty}.$$

Proof. Omitted.

Theorem 2.3. The sequence spaces $[V, \triangle_{v^{\lambda}}^{m}, F, p]$, $[V, \triangle_{v^{\lambda}}^{m}, F, p]^{0}$ and $[V, \triangle_{v^{\lambda}}^{m}, F, p]^{\infty}$ are not solid for $m \geq 1$.

Proof. Let $p_k = 1$ for all k, F(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $(x_k) = (k^r) \in [V, \triangle_{v^{\lambda}}^m, F, p]^{\infty}$ but $(\alpha_k x_k) \notin [V, \triangle_{v^{\lambda}}^m, F, p]^{\infty}$ when $\alpha_k = (-1)^k$ for all $k \in \mathbb{N}$. Hence $[V, \triangle_{v^{\lambda}}^m, F, p]^{\infty}$ is not solid. The other cases can be proved by considering similar examples.

Corollary 1. The sequence spaces $[V, \triangle_{v\lambda}^m, F, p]$, $[V, \triangle_{v\lambda}^m, F, p]^0$ and $[V, \triangle_{v\lambda}^m, F, p]^\infty$

are not perfect for $m \geq 1$.

*Proof.*Omitted.

Theorem 2.4. The sequence spaces $[V, \triangle_{v\lambda}^m, F, p]$, $[V, \triangle_{v\lambda}^m, F, p]^0$ and $[V, \triangle_{v\lambda}^m, F, p]^\infty$ are not symmetric for $m \ge 1$.

Proof. Let $p_k = 1$ for all k, F(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $(x_k) = (k^r) \in [V, \triangle_{n\lambda}^m, F, p]^{\infty}$. Let (y_k) be a rearrangement of (x_k) , which is defined as follows:

$$(y_k) = \{x_1, x_2, x_4, x_3, x_9, x_5, x_16, x_6, x_25, x_7, x_36, x_8, x_49, x_10, \dots \}.$$

Then $(y_k) \notin [V, \triangle_{v_{\lambda}}^m, F, p]^{\infty}$.

Remark 1. The space $[V, \triangle_{v^{\lambda}}^{m}, F, p]^{0}$ is not symmetric for $m \geq 2$.

Theorem 2.5. The sequence spaces $[V, \triangle_{v\lambda}^m, F, p]_z$, where z will denote any one of the notion 0, 1 or ∞ are not sequence algebras.

Proof. Let $p_k = 1$ for all $k \in \mathbb{N}$, F(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $x = (k^{m-2}), y = (k^{m-2}) \in [V, \triangle_{v^{\lambda}}^m, F, p]_z$, but $x, y \in [V, \triangle_{v^{\lambda}}^m, F, p]_z$.

Theorem 2.6. Let $\lambda = (\lambda_n)$ be a non - decreasing sequence of positive numbers tending to ∞ , then

- (i) If $x_k \to L[V, \triangle_{v_k}^m, F, p] \Rightarrow x_k \to LS(\triangle_{v_k}^m)$,
- (ii) If $x \in l_{\infty}(\Delta_v^m)$ and $x_k \to LS(\Delta_{v\lambda}^m)$, then $x_k \to L[V, \Delta_{v\lambda}^m, F, p]$,
- (iii) $S(\triangle_{v\lambda}^m) \cap l_{\infty}(\triangle_v^m) = [V, \triangle_{v\lambda}^m, F, p] \cap l_{\infty}(\triangle_v^m).$

Theorem 2.7. Let $F = (f_k)$ be a sequence of moduli, and $\sup_k (p_k) = H$. Then $[V, \triangle_{v^{\lambda}}^m, F, p] \subset S(\triangle_{v^{\lambda}}^m)$.

Proof. Let $x \in [V, \triangle_{v^{\lambda}}^{m}, F, p]$ and $\epsilon > 0$ be given . Let \sum_{1} denote the sum over k leq n such that $|\triangle_{v}^{m} x_{k+m} - L| \ge \epsilon$ and \sum_{2} denote the sum over $k \le n$ such that $|\triangle_{v}^{m} x_{k+m} - L| < \epsilon$. Then

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f_k(|\triangle_v^m x_{k+j} - L|) \right]^{p_k}$$

$$= \frac{1}{\lambda_n} \sum_{1} \left[f_k(|\triangle_v^m x_{k+j} - L|) \right]^{p_k} + \frac{1}{\lambda_n} \sum_{2} \left[f_k(|\triangle_v^m x_{k+j} - L|) \right]^{p_k}$$

$$\geq \frac{1}{\lambda_n} \sum_{1} \left[f_k(|\triangle_v^m x_{k+j} - L|) \right]^{p_k}$$

$$\geq \frac{1}{\lambda_n} \sum_{1} \left[f_k(\epsilon) \right]^{p_k}$$

$$\geq \frac{1}{\lambda_n} \sum_{1} \min([f_k(\epsilon)])^{\inf p_k} [f_k(\epsilon)])^H)$$

$$\geq \frac{1}{\lambda_n} |\{k \in I_n : |\triangle_v^m x_{k+j} - L| \geq \epsilon\}| \min([f_k(\epsilon)])^{\inf p_k} [f_k(\epsilon)])^H).$$

Hence $x \in S(\triangle_{n^{\lambda}}^{m})$.

Theorem 2.8. Let $F = (f_k)$ be a sequence of bounded moduli, and $0 < h = \inf_k(p_k) \le p_k \le \sup_k(p_k) = H < \infty$. Then $S(\triangle_{v^\lambda}^m) \subset [V, \triangle_{v^\lambda}^m, F, p]$.

Proof. Suppose that $F = (f_k)$ is a sequence of bounded moduli. Let $\epsilon > 0$ and let \sum_{1} denote the sum over $k \log n$ such that $|\triangle_v^m x_{k+m} - L| \ge \epsilon$ and \sum_{2} denote the sum over $k \le n$ such that $|\triangle_v^m x_{k+m} - L| < \epsilon$. Since $F = (f_k)$ is a sequence of bounded moduli there exists an integer K such that F(x) < K for all $x \ge 0$. Then

$$\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f_{k} (|\triangle_{v}^{m} x_{k+j} - L|) \right]^{p_{k}}$$

$$= \frac{1}{\lambda_{n}} \sum_{1} \left[f_{k} (|\triangle_{v}^{m} x_{k+j} - L|) \right]^{p_{k}} + \frac{1}{\lambda_{n}} \sum_{2} \left[f_{k} (|\triangle_{v}^{m} x_{k+j} - L|) \right]^{p_{k}}$$

$$\leq \frac{1}{\lambda_{n}} \sum_{1} \max(K^{h}, K^{H}) + \frac{1}{\lambda_{n}} \sum_{2} \left[f_{k}(\epsilon) \right]^{p_{k}}$$

$$\leq \max(K^{h}, K^{H}) \frac{1}{\lambda_{n}} |\{k \in I_{n} : |\triangle_{v}^{m} x_{k+j} - L| \geq \epsilon\}|$$

$$+ \max(f_{k}(\epsilon)^{h}, f_{k}(\epsilon)^{H}).$$

Hence $x \in [V, \triangle_{v^{\lambda}}^{m}, F, p]$.

Theorem 2.9. Let $F = (f_k)$ be a sequence of bounded moduli, and $0 < h = \inf_k(p_k) \le p_k \le \sup_k(p_k) = H < \infty$. Then $S(\triangle_{v^\lambda}^m) = [V, \triangle_{v^\lambda}^m, F, p]$ if and only if $F = (f_k)$ is a sequence of bounded moduli.

Proof. Let $F = (f_k)$ be a sequence of bounded moduli. By Theorem 7 and Theorem 8 we have $S(\triangle_{v^{\lambda}}^{m}) = [V, \triangle_{v^{\lambda}}^{m}, F, p]$.

Conversely, suppose that $F = (f_k)$ is a sequence of unbounded moduli. Then there exists a positive sequence (t_k) with $f_k(t_k) = k^2$, for $k = 1, 2, \cdots$. If we choose

$$\triangle_v^m x_i = \begin{cases} t_k, & i = k^2, (i = 1, 2, \cdots) \\ 0, & \text{otherwise} \end{cases}$$

Then

$$\frac{1}{\lambda_n} |\{k \in I_n : |\triangle_v^m x_{k+j}| \ge \epsilon\}| \le \frac{\sqrt{\lambda_{n-1}}}{\lambda_n} \quad \text{for all} \quad n \quad \text{and} \quad j.$$

This implies that $x \in S(\triangle^m_{v^{\lambda}})$, but $x \notin [V, \triangle^m_{v^{\lambda}}, F, p]$. This contradicts to $S(\triangle^m_{v^{\lambda}}) = [V, \triangle^m_{v^{\lambda}}, F, p]$.

Acknowledgement. The author would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

References

- [1] R. Colak and M. Et, On some generalized difference sequence spaces and related matrix transformation, Hokkoido Mathematical journal, 26(3) (1997): 483-492.
- [2] J. S. Connor, The statistical and strong p-Cesàro convergence of sequences, Analysis 8(1988), 47-63.
- [3] J. S. Connor, J. Fridy, and J. Kline, *Statistically pre cauchy sequences*, Analysis 14 (1994),311-317.
- [4] J.P. Duran, Infinite matrices and almost convergence, Math. Zeit. 128 (1972) 75 83.
- [5] A. Esi and M.Isik, Some generalized difference sequence spaces, Thai journal of mathematics, 3 (2005): 241-247.
- [6] M.Et, Strongly almost summable difference sequences of order m defined by a sequence of moduli, Stud.Sci. Math. Hung. 40(2003) 463 476.
- [7] M. Et, On some topological properties of generalized difference sequence spaces, Internat.J. Math.and Math.Sci., 24(11) (2000):785-791.
- [8] M. Et and A. Esi, On Kothe Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math.Sci.Soc., 24(11)(2000): 25-32.
- [9] H. Fast, Sur la convergence statistique, Colloq. Math. 2(1951), 241-244.
- [10] A.R. Freedman, J.J. Sember and M. Raphael, *Some Cesaro type summability spaces*, Proc. London Math.Soc. (37(3)) (1978), 508-520.
- [11] J. A. Fridy, On statistical convergence, Analysis 5(1985), 301-313.
- [12] J.A. Fridy and C. Orhan, Lacunary statistical convergence, Pecific J. Math. 160 (1993) 43-51.

- [13] P.Kampthan and M. Gupta, Sequence spaces and Series, Marcel Dekker Inc., New York, 1980. - 1112.
- [14] V. A. Khan, Some inclusion relations between the difference sequence spaces defined by sequence of moduli, Journal of the Indian Math. Soc. 73 (1-2)(2006):77-81.
- [15] V. A. Khan and Q.M.D. Lohani, Difference sequence spaces defined by a sequence of moduli, Southeast Asian Bull.Math 30 (2006): 1061-1067.
- [16] V.A. Khan and Q.M.D. Lohani, New Lacunary strong convergence diffference sequence spaces defined by sequence of moduli, Kyungpook Mathematical Journal 46 (4) (2006): 591-595.
- [17] V. A. Khan, New Lacunary Strongly Summable Difference Sequences and \triangle_v^m -Lacunary Almost Statistical Convergence, Vietnam J. Math., 36 (4) (2008): 405 413.
- [18] J.P. King, *Almost summable sequences*, Proc. Amer. Math. Soc. 16 (1966)1219 1225.
- [19] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981): 169- 176.
- [20] E. Kolk, On strong boundedness and summmability with respect to a sequence of moduli, Acta Comment. Univ. Tartu,960(1993)41-50
- [21] E. Kolk, Inclusion theorems for some sequence spaces defined by a sequence of moduli, Acta Comment. Univ. Tartu,970(1994)65-72
- [22] L. Leindler, Über de la Vallee Pousinsche Summierbarkeit allgemeiner Orthogonalreihen, Acta Math. Hung. 16 (1965), 375 378.
- [23] G.G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80(1948) 167-190.
- [24] I.J. Maddox, $A\ new\ type\ of\ convergence$, Math. Proc. camb. Phil. Soc. $83\ (1978)\ 61\ -64.$
- [25] I.J. Maddox, Sequence spaces defined by a modulus, Math. Camb. Phil. Soc., 100(1986), 161-166.
- [26] I.J. Maddox, Spaces of strongly summable sequences, Quart. J. Math. 18(1967)345-355.

- [27] S. Nanda, Strongly almost convergent sequences, Bull.Cal. Math.Soc. 76(1984) 236 - 240.
- [28] S. Nanda, Strongly almost summable and stronly almost convergent sequences, Acta. Math. Hung. 49((1987) 71 -76.
- [29] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded , Canad. J.Math., 25(1973), 973-975.
- [30] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30(1980), 139-150.
- [31] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(1959), 361-375.

Vakeel A.Khan Department of Mathematics, Aligarh Muslim University, Aligarh -202002(INDIA) email: vakhan@math.com