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1. Introduction

Let ω denote the set of all real sequences x = (xk). Let l∞, c and c0 be the
Banach spaces of bounded, convergent and null sequences x = (xk) normed by as
usual by ||x||∞ = sup

k
|xk|. Kizmaz [19] defined the sequence spaces :

l∞(4) = {x = (xk) : (4xk) ∈ l∞},

c(4) = {x = (xk) : (4xk) ∈ c},

and
c0(4) = {x = (xk) : (4xk) ∈ c0},

where 4xk = (xk − xk+1). These are Banach spaces with the norm

||x||4 = |x1|+ ||4x||∞.

Difference sequence spaces have been studied by Colak and Et [1], Et [6,7], Et and
Esi [8], Vakeel A. Khan [14,15,16,17] and many others.
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V. A. Khan - Spaces of strongly almost summable difference sequences

A sequence x ∈ l∞ is said to be almost convergent [23] if all Banach limits of x
coincide. Lorentz [23] defined that

[c∧] =

{
x ∈ w : lim

n

1
n

n∑
k=1

xk+j exists, uniformly in j

}
.

Many authors including Lorentz [23] , Duran [4], and King [18] have studied almost
convergent sequence spaces.Maddox [24,26] has defined x to be strongly almost con-
vergent to a number L if

lim
n

1
n

n∑
k=1

|xk+j − L| = 0, uniformly in j.

By [c∧] , we denote the space of all strongly almost convergent sequences. It is easy
to see that

c ⊂ [c∧] ⊂ c∧ ⊂ l∞.

The space of strongly almost convergent sequences was generalized by Nanda
[27,28].
Let p = (pk) be a sequence of strictly positive real numbers . Nanda [27] defined

[c∧, p] =

{
x ∈ w : lim

n

1
n

n∑
k=1

|xk+j − L|pk = 0, uniformly in j

}
,

[c∧, p]0 =

{
x ∈ w : lim

n

1
n

n∑
k=1

|xk+j |pk = 0, uniformly in j

}
,

[c∧, p]∞ =

{
x ∈ w : sup

n,j

1
n

n∑
k=1

|xk+j |pk < ∞, uniformly in j

}
.

Let λ = (λn) be a non decereasing sequence of positive reals tending to infinity and
λ1 = 1 and λn+1 ≤ λn + 1. The generalized de la Vallee - Poussin means is defined
by

tn(x) =
1
λn

∑
k∈In

xk,

where In = [n− λn + 1, n].
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A sequence x = (xk) is said to be (V, λ) - summable to a number l (see [22]) if
tn(x) → l as n →∞.We write

[V, λ]0 =

x = (xi) ∈ ω : lim
n

1
λn

∑
k∈In

|xi| = 0

 ,

[V, λ] =

x = (xi) ∈ ω : lim
n

1
λn

∑
k∈In

|xi − le| = 0, for some l ∈ IC

 ,

and

[V, λ]∞ =

x = (xi) ∈ ω : lim
n

1
λn

∑
k∈In

|xi| < ∞

 ,

For the sets of sequences that are strongly summable to zerto , strongly summable
and strongly bounded by the de la Vallee - poussin mathod.In the special case when
λn = n for n = 1, 2, 3, · · · the sets [V, λ]0, [V, λ] and [V, λ]∞ reduce the sets w0 , w
and w∞ introduced and studied by Maddox [25].
The concept of statistical convergence was first introduced by Fast [9] and also
Schoenberg [31] for real and complex sequences. Further this concept was studied
by Salat [30], Fridy [11], Fridy and C.Orhan [12],Connor [2], Connor,Fridy, and Kline
[3], and many others.
Let IN and IC be the set of natural numbers and complex numbers , respectively . If
E ⊆ IN , then the natural densityof E (see Freedman and Sember [10]) is denoted
by

δ(E) = lim
n

1
n
|{k ≤ n : k ∈ E}|,

where the vertical bars denote the cardinality of the enclosed set . The sequence x
is said to be statistically convergent to L , denoted by stat− lim x = L, if for every
ε > 0, the set

{k : |xk − L| ≥ ε, }

has natural density zero. In this case we write stat− lim xk = L.

Let X, Y ⊂ `0 . Then we shall write

M(X, Y ) =
⋂

x∈X

x−1 ∗ Y = {a ∈ `0 : ax ∈ Y for all x ∈ X}.

The set
Xα = M(X, l1)
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is called Köthe - Toeplitz dual space or α - dual of X(see [8]).
Let X be a sequence space . Then X is called
(i) Solid (or normal), if (αkxk) ∈ X, whenever (xk) ∈ X for all sequences of scalars
(αk) with |αk| ≤ 1 for all k ∈ IN .
(ii) Symmetric, if (xk) ∈ X implies (xπ(k)) ∈ X, where π(k) is a permutation of
IN .
(iii)Perfect if X = Xαα.
(iv) Sequence algebra if x.y ∈ X, whenever x, y ∈ X.
It is well known that if X is perfect then X is normal (see [13]).
A function f : [0,∞) → [0,∞) is called a modular if

1. f(t) = 0 if and only if t = 0,

2. f(t + u) ≤ f(t) + f(u) for all t, u ≥ 0,

3. f is increasing, and

4. f is continuous from the right of 0.

Let X be a sequence space. Then the sequence space X(f) is defined as

X(f) = {x = (xk) : (f(|xk|)) ∈ X}

for a modulus f([25],[29]). Kolk[20],[21] gave an extension of X(f) by considering a
sequence of moduli F = (fk) i.e.

X(F ) = {x = (xk) : (fk(|xk|)) ∈ X}

2. Main Results

Let F = (fk) be a sequence of moduli, p = (pk) be a sequence of positive real
numbers and v = (vk) be any fixed sequence of non zero complex numbers and
m ∈ IN be fixed(see [5]). This assumption is made throughout the rest of this paper.
Now we define the following sequence spaces :

[V,4m
vλ , F, p] =

x ∈ ω : lim
n

1
λn

∑
k∈In

[fk(|4m
v xk+j − L)|)]pk = 0,

uniformly in j,for some L>0,

[V,4m
vλ , F, p]0 =

{
x ∈ ω : lim

n

1
λn

∑
k∈In

[fk(|4m
v xk+j)|)]pk = 0, uniformly in j

}
,
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[V,4m
vλ , F, p]∞ =

x ∈ ω : lim
n

1
λn

∑
k∈In

[fk(|4m
v xk+j)|)]pk < ∞, uniformly in j

 ,

where

40
vxk = (vkxk), 4vxk = (vkxk − vk+1xk+1), 4m

v xk = (4m−1
v xk −4m−1

v xk+1)

. and so that

4m
v xk =

m∑
i=0

(−1)i

[
m
i

]
vk+ixk+i.

4m
vλ- Almost Statistical Convergence

We define the following definition :
Definition . A sequence x = (xk) is is said to be 4m

vλ - almost statistically conver-
gent to the number L provided that for every ε > 0,

lim
n

1
λn
|{k ∈ In : |4m

vλxk+j(x)− L| ≥ ε}| = 0, uniformly in j.

In this case we write S(4m
vλ))− lim x = L or xk → LS(4m

vλ) and In the case λn = n
we shall write S(4m

v ) instaed of S(4m
vλ).

Theorem 2.1. Let F = (fk) be a sequence of moduli, then [V,4m
vλ , F, p], [V,4m

vλ , F, p]0

and [V,4m
vλ , F, p]∞ are linaer spaces over the set of complex numbers IC.

Proof. Omitted.
Theorem 2.2. Let F = (fk) be a sequence of moduli, then

[V,4m
vλ , F, p]0 ⊂ [V,4m

vλ , F, p] ⊂ [V,4m
vλ , F, p]∞.

Proof. Omitted.
Theorem 2.3. The sequence spaces [V,4m

vλ , F, p], [V,4m
vλ , F, p]0 and [V,4m

vλ , F, p]∞

are not solid for m ≥ 1.
Proof. Let pk = 1 for all k, F (x) = x and λn = n for all n ∈ IN . Then (xk) = (kr) ∈
[V,4m

vλ , F, p]∞ but (αkxk) /∈ [V,4m
vλ , F, p]∞ when αk = (−1)k for all k ∈ IN . Hence

[V,4m
vλ , F, p]∞ is not solid. The other cases can be proved by considering similar

examples.
Corollary 1. The sequence spaces [V,4m

vλ , F, p], [V,4m
vλ , F, p]0 and [V,4m

vλ , F, p]∞
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are not perfect for m ≥ 1.
Proof.Omitted.
Theorem 2.4. The sequence spaces [V,4m

vλ , F, p], [V,4m
vλ , F, p]0 and [V,4m

vλ , F, p]∞

are not symmetric for m ≥ 1.
Proof. Let pk = 1 for all k, F (x) = x and λn = n for all n ∈ IN . Then (xk) = (kr) ∈
[V,4m

vλ , F, p]∞ . Let (yk) be a rearrangement of (xk) , which is defined as follows :

(yk) = {x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, · · · }.

Then (yk) /∈ [V,4m
vλ , F, p]∞.

Remark 1. The space [V,4m
vλ , F, p]0 is not symmetric for m ≥ 2.

Theorem 2.5. The sequence spaces [V,4m
vλ , F, p]z, where z will denote any one of

the notion 0, 1 or ∞ are not sequence algebras.
Proof. Let pk = 1 for all k ∈ IN , F (x) = x and λn = n for all n ∈ IN . Then
x = (km−2), y = (km−2) ∈ [V,4m

vλ , F, p]z , but x, y ∈ [V,4m
vλ , F, p]z.

Theorem 2.6. Let λ = (λn) be a non - decreasing sequence of positive numbers
tending to ∞ , then

(i) If xk → L[V,4m
vλ , F, p] ⇒ xk → LS(4m

vλ),

(ii) If x ∈ l∞(4m
v ) and xk → LS(4m

vλ), then xk → L[V,4m
vλ , F, p],

(iii) S(4m
vλ) ∩ l∞(4m

v ) = [V,4m
vλ , F, p] ∩ l∞(4m

v ).

Theorem 2.7. Let F = (fk) be a sequence of moduli, and sup
k

(pk) = H . Then

[V,4m
vλ , F, p] ⊂ S(4m

vλ).
Proof. Let x ∈ [V,4m

vλ , F, p] and ε > 0 be given . Let
∑
1

denote the sum over

kleqn such that |4m
v xk+m − L| ≥ ε and

∑
2

denote the sum over k ≤ n such that

|4m
v xk+m − L| < ε. Then

1
λn

∑
k∈In

[fk(|4m
v xk+j − L|)]pk

=
1
λn

∑
1

[fk(|4m
v xk+j − L|)]pk+

1
λn

∑
2

[fk(|4m
v xk+j − L|)]pk

≥ 1
λn

∑
1

[fk(|4m
v xk+j − L|)]pk

≥ 1
λn

∑
1

[fk(ε)]
pk
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≥ 1
λn

∑
1

min([fk(ε)])inf pk [fk(ε)])H)

≥ 1
λn
|{k ∈ In : |4m

v xk+j−L| ≥ ε}|min([fk(ε)])inf pk [fk(ε)])H).

Hence x ∈ S(4m
vλ).

Theorem 2.8. Let F = (fk) be a sequence of bounded moduli, and 0 < h =
inf
k

(pk) ≤ pk ≤ sup
k

(pk) = H < ∞ . Then S(4m
vλ) ⊂ [V,4m

vλ , F, p].

Proof. Suppose that F = (fk) is a sequence of bounded moduli. Let ε > 0 and let∑
1

denote the sum over kleqn such that |4m
v xk+m − L| ≥ ε and

∑
2

denote the sum

over k ≤ n such that |4m
v xk+m − L| < ε. Since F = (fk) is a sequence of bounded

moduli there exists an integer K such that F (x) < K for all x ≥ 0. Then

1
λn

∑
k∈In

[fk(|4m
v xk+j − L|)]pk

=
1
λn

∑
1

[fk(|4m
v xk+j − L|)]pk +

1
λn

∑
2

[fk(|4m
v xk+j − L|)]pk

≤ 1
λn

∑
1

max(Kh,KH) +
1
λn

∑
2

[fk(ε)]
pk

≤ max(Kh,KH)
1
λn
|{k ∈ In : |4m

v xk+j − L| ≥ ε}|

+max(fk(ε)h, fk(ε)H).

Hence x ∈ [V,4m
vλ , F, p].

Theorem 2.9. Let F = (fk) be a sequence of bounded moduli, and 0 < h =
inf
k

(pk) ≤ pk ≤ sup
k

(pk) = H < ∞ . Then S(4m
vλ) = [V,4m

vλ , F, p] if and only if

F = (fk) is a sequence of bounded moduli.
Proof. Let F = (fk) be a sequence of bounded moduli. By Theorem 7 and Theorem
8 we have S(4m

vλ) = [V,4m
vλ , F, p].

Conversely, suppose that F = (fk) is a sequence of unbounded moduli. Then
there exists a positive sequence (tk) with fk(tk) = k2, for k = 1, 2, · · · . If we choose

4m
v xi =

{
tk, i = k2, (i = 1, 2, · · · )
0, otherwise

Then
1
λn
|{k ∈ In : |4m

v xk+j | ≥ ε}| ≤
√

λn−1

λn
for all n and j.
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This implies that x ∈ S(4m
vλ), but x /∈ [V,4m

vλ , F, p].This contradicts to S(4m
vλ) =

[V,4m
vλ , F, p].
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