ON LACUNARY ALMOST CONVERGENT SEQUENCES

Ahmad H. A. Bataineh

ABSTRACT. The purpose of this paper is to define and study the spaces $[\hat{c}, M, p]^{\theta}(\Delta_u^m, q, s), [\hat{c}, M, p,]_0^{\theta}(\Delta_u^m, q, s)$ and $[\hat{c}, M, p,]_{\infty}^{\theta}(\Delta_u^m, q, s)$ of lacunary convergent sequences. We also study some inclusion relations between these spaces and some properties and theorems.

2000 Mathematics Subject Classification:40D05, 40A05.

1.Introduction and definitions

Let w denote the set of all complex sequences $x = (x_i)$, and l_{∞}, c , and c_0 be the linear spaces of bounded, convergent, and null sequences with complex terms, respectively, normed by $||x|| = \sup_i |x_i|$, where $i \in \mathbb{N}$, the set of positive integers.

A bounded sequence $x = (x_i)$ is said to be almost convergent (see [8]) if all Banach limits of x coincide. In [8], it was shown that:

$$\hat{c} = \{x = (x_i) : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} x_{i+t} \text{ exists, uniformly in } t\}.$$

Maddox ([9], [10]) defined a sequence $x = (x_i)$ to be strongly almost convergent to a number L if

$$\lim_{n\to\infty} \frac{1}{n} \sum_{i=0}^{n} |x_{i+t} - L| = 0, \text{ uniformly in } t.$$

The spaces of lacunary strong convergence have been introduced by Freedman et al. [3] A sequence of positive integers $\theta = (k_r)$ is called lacunary if $k_0 = 0$, $0 < k_r < k_{r+1}$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. The intervals determined by θ are denoted by $I_r = (k_{r-1}, k_r]$ and the ratio k_r/k_{r-1} will be denoted by q_r . The space of lacunary strongly convergent sequences N_{θ} was defined as follows:

$$N_{\theta} = \{x = (x_i) : \lim_{r \to \infty} h_r^{-1} \sum_{i \in I_r} |x_i - s| = 0, \text{ for some } s\}.$$

For any sequence $x = (x_i)$, the difference sequence Δx is defined by $\Delta x = (\Delta x_i)_{i=1}^{\infty} = (x_i - x_{i+1})_{i=1}^{\infty}$. Kizmaz [5] defined the sequence spaces:

$$l_{\infty}(\Delta) = \{ x \in w : \Delta x \in l_{\infty} \},\$$

$$c\ (\Delta) = \{x \in w : \Delta x \in c\},\$$

and

$$c_0(\Delta) = \{x \in w : \Delta x \in c_0\}.$$

Et and Colak [2] generalized the notion of difference sequence spaces and defined the spaces

$$l_{\infty}(\Delta^m) = \{ x \in w : \Delta^m x \in l_{\infty} \},\$$

$$c\ (\Delta^m) = \{x \in w : \Delta^m x \in c\},\$$

and

$$c_0(\Delta^m) = \{ x \in w : \Delta^m x \in c_0 \},$$

where $\Delta^m x_i = \Delta^{m-1} x_i - \Delta^{m-1} x_{i+1}$ and $\Delta^0 x_i = x_i$, for all $i \in \mathbb{N}$. We recall that an

Orlicz function is a function $M:[0,\infty)\to [0,\infty)$ which is continuous, nondecreasing and convex with $M(0)=0,\ M(x)>0$ for x>0 and $M(x)\to\infty$, as $x\to\infty$. The Orlicz function M can always be represented in the following integral form (see Krasnoselskii and Rutickii [6])

$$M(x) = \int_0^x \varphi(t)dt,$$

where φ , known as the kernel of M, is right-differentiable for $t \geq 0$, $\varphi(0) = 0$, $\varphi(t) > 0$ for t > 0, φ is nondecreasing and $\varphi(t) \to \infty$, as $t \to \infty$.

If convexity of M is replaced by $M(x+y) \leq M(x) + M(y)$, then it is called a modulus function, defined and discussed by Ruckle [12] and Maddox [11].

An Orlicz function M is said to satisfy the Δ_2 -condition for all values of v, if there exist a constant L > 0 such that :

$$M(2v) \le LM(v) \ (v \ge 0).$$

The Δ_2 -condition is equivalent to the satisfaction of the inequality :

$$M(Tv) \le LTvM(v)$$

for all values of v and for all T > 1 (see Krasnoselskii and Rutitsky [6]).

Remark 1. An Orlicz function satisfies the inequality $M(\lambda u) \leq \lambda M(u)$ for all λ with $0 < \lambda < 1$.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct the Orlicz sequence space :

$$l_M = \{x = (x_i) : \sum_{i=1}^{\infty} M(\frac{|x_i|}{\rho}) < \infty, \text{ for some } \rho > 0\},$$

which is a Banach space with the norm:

$$||x||_{M} = \inf\{\rho > 0 : \sum_{i=1}^{\infty} M(\frac{|x_i|}{\rho}) \le 1\}.$$

If $M(x) = x^p, 1 \leq p < \infty$, the space l_M coincide with the classical sequence space l_p .

Let M be an Orlicz function, $p = (p_i)$ be any bounded sequence of strictly positive real numbers, then Güngör and Et [4] defined the sequence spaces:

$$[\hat{c}, M, p](\Delta^m) = \{x = (x_i) : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^n [M(\frac{|\Delta^m x_{i+t} - L|}{\rho})]^{p_i} = 0, \text{ uniformly in } t,$$
 for some $\rho > 0$ and $L > 0\},$

$$[\hat{c}, M, p]_0(\Delta^m) = \{x = (x_i) : \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^n [M(\frac{|\Delta^m x_{i+t}|}{\rho})]^{p_i} = 0, \text{ uniformly in } t,$$
 for some $\rho > 0 \},$

and

$$[\hat{c}, M, p]_{\infty}(\Delta^m) = \{x = (x_i) : \sup_{n, t} \frac{1}{n} \sum_{i=0}^n [M(\frac{|\Delta^m x_{i+t}|}{\rho})]^{p_i} < \infty, \text{ for some } \rho > 0 \}.$$

Esi [1] defined the sequence spaces:

$$[\hat{c}, M, p]^{\theta}(\Delta^{m}) = \{x = (x_{i}) : \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{i \in I_{r}} [M(\frac{|\Delta^{m} x_{i+t} - L|}{\rho})]^{p_{i}} = 0, \text{ uniformly in } t,$$
 for some $\rho > 0$ and $L > 0\},$

$$[\hat{c}, M, p]_0^{\theta}(\Delta^m) = \{x = (x_i) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} [M(\frac{|\Delta^m x_{i+t}|}{\rho})]^{p_i} = 0, \text{ uniformly in } t,$$
 for some $\rho > 0 \},$

and

$$[\hat{c}, M, p]_{\infty}^{\theta}(\Delta^{m}) = \{x = (x_{i}) : \sup_{r, t} \frac{1}{h_{r}} \sum_{i \in I_{r}} [M(\frac{|\Delta^{m} x_{i+t}|}{\rho})]^{p_{i}} < \infty, \text{ for some } \rho > 0 \}.$$

Now, if $u = (u_i)$ is any sequence such that $u_i \neq 0$ for each i, w(X) denotes the space of all sequences with elements in X, where (X, q) denotes a seminormed space, seminormed by q, and s is any real number such that $s \geq 0$, then we define the following sequence spaces:

$$[\hat{c}, M, p]^{\theta}(\Delta_u^m, q, s) = \{x = (x_i) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m x_{i+t} - L|}{\rho}))]^{p_i} = 0,$$
 uniformly in t , for some $\rho > 0$ and $L > 0\},$

$$[\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s) = \{x = (x_i) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m x_{i+t}|}{\rho}))]^{p_i} = 0,$$
 uniformly in t , for $\rho > 0$,

and

$$[\hat{c}, M, p]_{\infty}^{\theta}(\Delta_u^m, q, s) = \{x = (x_i) : \sup_{r, t} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m x_{i+t}|}{\rho}))]^{p_i} < \infty, for \rho > 0 \}.$$

where

$$\Delta_u^0 x = u_i x_i,$$

$$\Delta_u^1 x = u_i x_i - u_{i+1} x_{i+1},$$

$$\Delta_u^2 x = \Delta(\Delta_u^1 x),$$

$$\vdots$$

$$\Delta_u^m x = \Delta(\Delta_u^{m-1} x),$$

so that

$$\Delta_u^m x = \Delta_{u_i}^m x_i = \sum_{r=0}^m (-1)^r \binom{m}{r} u_{i+r} x_{i+r}.$$

If $u = e = (1, 1, 1, \dots)$, $q(x_i) = x_i$ for each i, and s = 0, then the above spaces reduce to those defined and studied by Esi [1].

If $x = (x_i) \in [\hat{c}, M, p]^{\theta}(\Delta_u^m, q, s)$, we say that $x = (x_i)$ is lacunary almost (Δ_u^m, q, s) —convergent to L with respect to Orlicz function M.

When M(x) = x, then we write $[\hat{c}, p]^{\theta}(\Delta_u^m, q, s)$, $[\hat{c}, p]^{\theta}_0(\Delta_u^m, q, s)$, and $[\hat{c}, p]^{\theta}_{\infty}(\Delta_u^m, q, s)$ for the spaces $[\hat{c}, M, p]^{\theta}(\Delta_u^m, q, s)$, $[\hat{c}, M, p]^{\theta}_0(\Delta_u^m, q, s)$, and $[\hat{c}, M, p]^{\theta}_{\infty}(\Delta_u^m, q, s)$, respectively.

If $p_i = 1$ for each i, then $[\hat{c}, M, p]^{\theta}(\Delta_u^m, q, s)$, $[\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s)$, and $[\hat{c}, M, p]_{\infty}^{\theta}(\Delta_u^m, q, s)$ reduce to $[\hat{c}, M]^{\theta}(\Delta_u^m, q, s)$, $[\hat{c}, M]_0^{\theta}(\Delta_u^m, q, s)$, and $[\hat{c}, M]_{\infty}^{\theta}(\Delta_u^m, q, s)$, respectively.

The following inequality will be used throughout this paper:

$$|x_i + y_i|^{p_i} \le K(|x_i|^{p_i} + |y_i|^{p_i}),$$
 (1)

where x_i and y_i are complex numbers, $K = \max(1, 2^{H-1})$ and $H = \sup_i p_i < \infty$.

2. Main results

In this section we prove the following theorems:

Theorem 1. Let M be an Orlicz function and $p=(p_i)$ be a bounded sequence of strictly positive real numbers. Then $[\hat{c},M,p]^{\theta}(\Delta_u^m,q,s), [\hat{c},M,p]^{\theta}_0(\Delta_u^m,q,s)$, and $[\hat{c},M,p]^{\theta}_{\infty}(\Delta_u^m,q,s)$ are linear spaces over the set of complex numbers \mathbb{C} .

Proof. We will prove it for $[\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s)$ and the others are similar. Let $x = (x_i), y = (y_i) \in [\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s)$ and $\alpha, \beta \in \mathbb{C}$. then there exists positive numbers ρ_1, ρ_2 such that

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m x_{i+t}|}{\rho_1}))]^{p_i} = 0, \text{ uniformly in } t,$$

and

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{i\in I_r}i^{-s}[M(q(\frac{\mid\Delta_u^mx_{i+t}\mid}{\rho_2}))]^{p_i}=0, \text{uniformly in } t.$$

Let $\rho_3 = \max(2 \mid \alpha \mid \rho_1, 2 \mid \beta \mid \rho_2)$. Since M is nondecreasing and convex and using inequality (1), we see that

$$\begin{split} &\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(\alpha x_{i+t} + \beta y_{i+t})|}{\rho_3}))]^{p_i} \\ &= &\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\alpha \Delta_u^m(x_{i+t}) + \beta \Delta_u^m(y_{i+t})|}{\rho_3}))]^{p_i} \\ &\leq &K \frac{1}{h_r} \sum_{i \in I_r} \frac{1}{2^{p_i}} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho_1}))]^{p_i} + K \frac{1}{h_r} \sum_{i \in I_r} \frac{1}{2^{p_i}} i^{-s} [M(q(\frac{|\Delta_u^m(y_{i+t})|}{\rho_2}))]^{p_i} \\ &\leq &K \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho_1}))]^{p_i} + K \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(y_{i+t})|}{\rho_2}))]^{p_i} \\ &\to &0 \text{ as } r \to \infty, \text{ uniformly in } t. \end{split}$$

This shows that $\alpha x + \beta y \in [\hat{c}, M, p]_0^\theta(\Delta_u^m, q, s)$. Hence $[\hat{c}, M, p]_0^\theta(\Delta_u^m, q, s)$ is linear. **Theorem 2**. Let M be an Orlicz function and $p = (p_i)$ be a bounded sequence of strictly positive real numbers. Then $[\hat{c}, M, p]_0^\theta(\Delta_u^m, q, s)$ is a topological linear space paranormed by

$$h(x) = \inf \{ \rho^{\frac{p_r}{h}} : (\frac{1}{h_r} \sum_{i \in I} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho}))]^{p_i})^{\frac{1}{H}} \le 1, r = 1, 2, \dots, \ t = 1, 2, \dots \},$$

where $H = \max(1, \sup_i p_i)$.

Proof. Clearly $h(x) \ge 0$ for all $x = (x_i) \in [\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s)$. Since M(0) = 0, we see that h(0) = 0. Conversely, suppose that h(x) = 0, then

$$\inf \{ \rho^{\frac{p_r}{h}} : (\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho}))]^{p_i})^{\frac{1}{H}} \le 1, r = 1, 2, \cdots, \ t = 1, 2, \cdots \} = 0.$$

This implies that for a given $\varepsilon > 0$, there exists some $\rho_{\varepsilon}(0 < \rho_{\varepsilon} < \varepsilon)$ such that

$$\left(\frac{1}{h_r}\sum_{i\in I_r}i^{-s}\left[M\left(q\left(\frac{\mid\Delta_u^m(x_{i+t})\mid}{\rho_\varepsilon}\right)\right)\right]^{p_i}\right)^{\frac{1}{H}}\leq 1.$$

Thus

$$(\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\varepsilon}))]^{p_i})^{\frac{1}{H}} \leq (\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho_{\varepsilon}}))]^{p_i})^{\frac{1}{H}} \leq 1$$

for each r and t. Suppose that $x_i \neq 0$ for each $i \in \mathbb{N}$. Then $\Delta_u^m(x_{i+t}) \neq 0$, for each

 $i, t \in \mathbb{N}$. Let $\varepsilon \to 0$, then $\frac{\Delta_u^m(x_{i+t})}{\varepsilon} \to \infty$. This implies that $(\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\varepsilon}))]^{p_i})^{\frac{1}{H}} \to \infty$ which is contradiction. Therefore $\Delta_u^m(x_{i+t}) = 0$, for each $i, t \in \mathbb{N}$, and thus $x_i = 0$, for each $i \in \mathbb{N}$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that :

$$\left(\frac{1}{h_r} \sum_{i \in I_r} i^{-s} \left[M\left(q\left(\frac{|\Delta_u^m(x_{i+t})|}{\rho_1}\right)\right)\right]^{p_i}\right)^{\frac{1}{H}} \le 1$$

and

$$(\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho_2}))]^{p_i})^{\frac{1}{H}} \le 1,$$

for each r and t. Let $\rho = \rho_1 + \rho_2$. Then we have :

$$(\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t} + y_{i+t})|}{\rho}))]^{p_i})^{\frac{1}{H}}$$

$$\leq (\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})| + \Delta_u^m(y_{i+t})|}{\rho_1 + \rho_2}))]^{p_i})^{\frac{1}{H}}$$

$$\leq (\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [\frac{\rho_1}{\rho_1 + \rho_2} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho_1})) + \frac{\rho_2}{\rho_1 + \rho_2} M(q(\frac{|\Delta_u^m(y_{i+t})|}{\rho_1}))]]^{p_i})^{\frac{1}{H}}$$

$$\leq \frac{\rho_1}{\rho_1 + \rho_2} (\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho_1}))]^{p_i})^{\frac{1}{H}}$$

$$+ \frac{\rho_2}{\rho_1 + \rho_2} (\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(y_{i+t})|}{\rho_1}))]^{p_i})^{\frac{1}{H}}, \text{ using Minkowski's inequality}$$

$$\leq 1.$$

Since the ρ 's are nonnegative, so we get that :

$$\begin{split} h(x+y) &= \inf\{\rho^{\frac{p_r}{h}}: (\frac{1}{h_r}\sum_{i\in I_r}i^{-s}[M(q(\frac{|\Delta_u^m(x_{i+t}+y_{i+t})|}{\rho}))]^{p_i})^{\frac{1}{H}} \leq 1, \\ r &= 1, 2, \cdots, \ t = 1, 2, \cdots\}, \\ &\leq \inf\{\rho^{\frac{p_r}{h}}_1: (\frac{1}{h_r}\sum_{i\in I_r}i^{-s}[M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho_1}))]^{p_i})^{\frac{1}{H}} \leq 1, \\ r &= 1, 2, \cdots, \ t = 1, 2, \cdots\} \\ &+ \inf\{\rho^{\frac{p_r}{h}}_2: \ (\frac{1}{h_r}\sum_{i\in I_r}i^{-s}[M(q(\frac{|\Delta_u^m(y_{i+t})|}{\rho_2}))]^{p_i})^{\frac{1}{H}} \leq 1, r = 1, 2, \cdots, \ t = 1, 2, \cdots\}. \end{split}$$

Therefore $h(x+y) \le h(x) + h(y)$. Finally, we prove that the scalar multiplication is continuous. let λ be any complex number. Then by definition:

$$h(\lambda x) = \inf\{\rho^{\frac{p_r}{h}} : (\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t} + y_{i+t})|}{\rho}))]^{p_i})^{\frac{1}{H}} \le 1, r, t = 1, 2, \dots\}.$$

Then

$$h(\lambda x) = \inf\{(|\lambda| |k)^{\frac{p_r}{h}} : (\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{k}))]^{p_i})^{\frac{1}{H}} \le 1, r, t = 1, 2, \dots\},$$

where $k = \frac{\rho}{|\lambda|}$. Since $|\lambda|^{p_r} \le \max(1, |\lambda|^{\sup p_r})$, we have :

$$h(\lambda x) \leq \max(1, |\lambda|^{\sup p_r}) \inf\{(k)^{\frac{p_r}{h}} : (\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{k}))]^{p_i})^{\frac{1}{H}} \leq 1,$$

$$r = 1, 2, \dots, t = 1, 2, \dots\}.$$

Then the scalar multiplication is continuous follows from the above inequality.

Theorem 3. Let M be an Orlicz function. If $\sup_i [M(x)]^{p_i} < \infty$, for all fixed x > 0, then

$$[\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s) \subset [\hat{c}, M, p]_{\infty}^{\theta}(\Delta_u^m, q, s).$$

Proof. Let $x = (x_i) \in [\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s)$. The there exists some ρ_1 such that :

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho_1}))]^{p_i} = 0, \text{ uniformly in } t.$$

Define $\rho = 2\rho_1$. Since M is nondecreasing and convex and using Inequality (1), we get that:

$$\sup_{r,t} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho}))]^{p_i}$$

$$= \sup_{r,t} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t}) - L + L|}{\rho}))]^{p_i}$$

$$\leq K \sup_{r,t} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} \frac{1}{2^{p_i}} [M(q(\frac{|\Delta_u^m(x_{i+t}) - L|}{\rho_1}))]^{p_i}$$

$$+ K \sup_{r,t} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} \frac{1}{2^{p_i}} [M(q(\frac{|L|}{\rho_1}))]^{p_i}$$

$$\leq K \sup_{r,t} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t}) - L|}{\rho_1}))]^{p_i}$$

$$+ K \sup_{r,t} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|L|}{\rho_1}))]^{p_i}$$

$$+ K \sup_{r,t} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|L|}{\rho_1}))]^{p_i}$$

$$< \infty.$$

Hence $x = (x_i) \in [\hat{c}, M, p]_{\infty}^{\theta}(\Delta_u^m, q, s)$.

Theorem 4. Let $0 < \inf p_i = h \le \sup p_i = H < \infty$ and M, M_1 be Orlicz functions satisfying Δ_2 -condition, then $[\hat{c}, M_1, p]_0^{\theta}(\Delta_u^m, q, s) \subset [\hat{c}, M \circ M_1, p]_0^{\theta}(\Delta_u^m, q, s), [\hat{c}, M_1, p]^{\theta}(\Delta_u^m, q, s) \subset [\hat{c}, M \circ M_1, p]^{\theta}(\Delta_u^m, q, s)$ and $[\hat{c}, M_1, p]_{\infty}^{\theta}(\Delta_u^m, q, s) \subset [\hat{c}, M \circ M_1, p]_{\infty}^{\theta}(\Delta_u^m, q, s)$.

Proof. Let $x = (x_i) \in [\hat{c}, M_1, p]_0^{\theta}(\Delta_u^m, q, s)$. The we have :

$$\lim_{r\to\infty}\frac{1}{h_r}\sum_{i\in I_r}i^{-s}[M_1(q(\frac{\mid\Delta_u^m(x_{i+t})-L\mid}{\rho}))]^{p_i}=0, \text{ uniformly in } t, \text{ for some } L.$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M(t) < \varepsilon$ for $0 \le t < \delta$. Let $y_{i,t} = M_1(q(\frac{|\Delta_u^m(x_{i+t}) - L|}{\rho}))$ for all $i, t \in \mathbb{N}$. We can write :

$$\frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(y_{i,t})]^{p_i} = \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,t < \delta}}} i^{-s} [M(y_{i,t})]^{p_i} + \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,t} > \delta}} i^{-s} [M(y_{i,t})]^{p_i}$$

By Remark 1, we get that:

$$\frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,t} < \delta}} i^{-s} [M(y_{i,t})]^{p_i} \le [M(1)]^H \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,t} < \delta}} i^{-s} [M(y_{i,t})]^{p_i}$$

$$\leq [M(2)]^{H} \frac{1}{h_{r}} \sum_{\substack{i \in I_{r} \\ y_{i,t} < \delta}} i^{-s} [M(y_{i,t})]^{p_{i}}. \tag{2}$$

For $y_{i,t} > \delta$,

$$y_{i,t} < \frac{y_{i,t}}{\delta} < 1 + \frac{y_{i,t}}{\delta}.$$

Since M is nondecreasing and convex, it follows that:

$$M(y_{i,t}) < M(1 + \frac{y_{i,t}}{\delta}) < \frac{1}{2}M(2) + \frac{1}{2}M(\frac{2y_{i,t}}{\delta}).$$

Since M sastisfies Δ_2 -condition, we can write

$$M(y_{i,t}) < \frac{1}{2}T\frac{y_{i,t}}{\delta}M(2) + \frac{1}{2}T\frac{y_{i,t}}{\delta}M(2) = T\frac{y_{i,t}}{\delta}M(2).$$

Hence

$$\frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,t} > \delta}} i^{-s} [M(y_{i,t})]^{p_i} \le \max(1, \frac{TM(2)}{\delta}) \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,t} > \delta}} i^{-s} [M(y_{i,t})]^{p_i}. \tag{3}$$

By (2) and (3), we see that $x \in [\hat{c}, M \circ M_1, p]_0^{\theta}(\Delta_u^m, q, s)$.

Following similar arguments we can prove the others.

Theorem 5. Let M be an Orlicz function, then the following are equivalent:

- (a) $[\hat{c}, p]_{\infty}^{\theta}(\Delta_{u}^{m}, q, s) \subset [\hat{c}, M, p]_{\infty}^{\theta}(\Delta_{u}^{m}, q, s),$ (b) $[\hat{c}, p]_{0}^{\theta}(\Delta_{u}^{m}, q, s) \subset [\hat{c}, M, p]_{\infty}^{\theta}(\Delta_{u}^{m}, q, s),$ (c) $\sup_{r} \frac{1}{h_{r}} \sum_{i \in I_{r}} i^{-s} [M(q(\frac{l}{\rho}))]^{p_{i}} < \infty \ (l, \rho > 0).$

Proof. (a) \Rightarrow (b): It is obvious since $[\hat{c}, p]_0^{\theta}(\Delta_u^m, q, s) \subset [\hat{c}, p]_{\infty}^{\theta}(\Delta_u^m, q, s)$. (b) \Rightarrow (c): Let $[\hat{c}, p]_0^{\theta}(\Delta_u^m, q, s) \subset [\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s)$. Suppose that (c) does not hold. Then for some $l, \rho > 0$,

$$\sup_{r} \frac{1}{h_r} \sum_{i \in I} i^{-s} [M(q(\frac{l}{\rho}))]^{p_i} = \infty$$

and therefore we can find a subinterval $I_{r(j)}$ of the set of intervals I_r such that

$$\frac{1}{h_{r(j)}} \sum_{i \in I_{r(j)}} i^{-s} [M(q(\frac{j^{-1}}{\rho}))]^{p_i} > j, \ j = 1, 2, \cdots$$
(4)

Define the sequence $x = (x_i)$ by

$$\Delta_u^m(x_{i+t}) = \begin{cases} j^{-1}, i \in I_{r(j)} \\ 0, i \notin I_{r(j)} \end{cases}$$

for all $t \in \mathbb{N}$. Then $x = (x_i) \in [\hat{c}, p]_0^{\theta}(\Delta_u^m, q, s)$ but (4) implies that $x = (x_i) \notin$ $[\hat{c}, M, p]^{\theta}_{\infty}(\Delta_u^m, q, s)$ which contradicts (b). Hence (c) must hold.

(c) \Rightarrow (a): Let (c) hold and $x=(x_i)\in [\hat{c},p]_{\infty}^{\theta}(\Delta_u^m,q,s)$. Suppose that $x=(x_i)\notin$ $[\hat{c}, M, p]_{\infty}^{\theta}(\Delta_u^m, q, s)$. Then

$$\sup_{r,t} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho}))]^{p_i} = \infty.$$
 (5)

Let $l = |\Delta_n^m(x_{i+t})|$, for each i and fixed t, then using (5), we get that:

$$\sup_{r} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{l}{\rho}))]^{p_i} = \infty$$

which contradicts (c). Hence (a) must hold.

Theorem 6. Let $1 \le p_i \le \sup p_i < \infty$ and M be an Orlicz function, then the following are equivalent:

- (a) $[\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s) \subset [\hat{c}, p]_0^{\theta}(\Delta_u^m, q, s),$ (b) $[\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s) \subset [\hat{c}, p]_0^{\theta}(\Delta_u^m, q, s),$ (c) $\inf_r \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{l}{\rho}))]^{p_i} > 0 \ (l, \rho > 0).$ **Proof.** (a) \Rightarrow (b): It is obvious.

(b) \Rightarrow (c): Let (b) hold. Suppose that (c) does not hold. Then for some $l, \rho > 0$,

$$\inf_{r} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{l}{\rho}))]^{p_i} = 0$$

and therefore we can find a subinterval $I_{r(j)}$ of the set of intervals I_r such that

$$\frac{1}{h_{r(j)}} \sum_{i \in I_{r(j)}} i^{-s} [M(q(\frac{j^{-1}}{\rho}))]^{p_i} < j^{-1}, \ j = 1, 2, \cdots$$
 (6)

Define the sequence $x = (x_i)$ by

$$\Delta_u^m(x_{i+t}) = \begin{cases} j, i \in I_{r(j)} \\ 0, i \notin I_{r(j)} \end{cases}$$

for all $t \in \mathbb{N}$. Then $x = (x_i) \in [\hat{c}, M, p]_0^{\theta}(\Delta_u^m, q, s)$ but (6) implies that $x = (x_i) \notin$ $[\hat{c}, p]_{\infty}^{\theta}(\Delta_{u}^{m}, q, s)$ which contradicts (b). Hence (c) must hold $(c) \Rightarrow (a)$: Let (c) hold and $x=(x_i)\in [\hat{c},M,p]_0^{\theta}(\Delta_u^m,q,s)$. Then

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho}))]^{p_i} = 0, \text{ uniformly in } t, \text{ for some } \rho > 0.$$
 (7)

Now, suppose that $x = (x_i) \notin [\hat{c}, p]_0^{\theta}(\Delta_u^m, q, s)$. Then for some $\varepsilon > 0$ and a subinterval $I_{r(j)}$ of the set of intervals I_r , we have $|\Delta_u^m(x_{i+t})| \ge \varepsilon$ for each i and some $t \ge t_0$. Then from the properties of Orlicz functions we can write

$$[M(q(\frac{|\Delta_u^m(x_{i+t})|}{\rho}))]^{p_i} \ge [M(q(\frac{\varepsilon}{\rho}))]^{p_i}$$

and consequently by (7) we see that:

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} i^{-s} [M(q(\frac{\varepsilon}{\rho}))]^{p_i} = 0,$$

which contradicts (c). Hence (a) must hold.

References

- [1] Esi, A., Generalized difference sequence spaces defined by Orlicz functions, General Mathematics, Vol. 2 (2009), 53-66.
- [2] Et., M., and Colak, R., On some generalized difference sequence spaces, Soo-chow J. Math., 21 (4) (1995), 377-386.
- [3] Freedman, A.R., Sember, I. J. and Raphael, M., Some Cesaro-type summability spaces, Proc. Lond. Math. Soc. 37 (1978), 508-520.
- [4] Güngör, M., and Et, M., Δ^r -strongly almost summable sequences defined by Orlicz functions, Indian J. Pure A ppl. Math., 34 (8) (2003), 1141-1151.
- [5] Kizmaz, H, On certain sequence spaces, Canad. Math. Bull. 24 (2) (1981), 169-176.
- [6] Krasnoselskii, M. A., and Rutickii, Ya b.: Convex Functions and Orlicz Spaces, Groning, the Netherlands, 1961 (Translated from the first Russian Edition, by: Leo F. Boron).
- [7] Lindenstrauss, J., and Tzafriri, L.: On Orlicz sequence spaces, Israel J. Math., 10 (3) (1971), 379-390.
- [8] Lorentz, G. G., A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [9] Maddox, I. J., Spaces of strongly summable sequences, Quart. J. Math., 18 (1967), 345-355.

- [10] Maddox, I. J., A new type of convergence, Math. Proc. Camb. Phil. Soc., 83 (1978), 61-64.
- [11] Maddox, I. J., Sequence spaces defined by a modulus, Mat. Proc. Camb. Phil. Soc. 100 (1986), 161-166.
- [12] Ruckle, W. H., FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. 25 (1973), 973-978.

Ahmad H. A. Bataineh Faculty of Science Department of Mathematics Al al-Bayt University

 ${\rm P.O.~Box}:\,130095~{\rm Mafraq},\,{\rm Jordan}$

 $\hbox{E-mail:} ahabf2003@yahoo.ca$