Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 062, 19 pages      arXiv:1509.08405      https://doi.org/10.3842/SIGMA.2016.062

Skew-Zigzag Algebras

Chad Couture
Department of Mathematics and Statistics, University of Ottawa, 585 King Edward Ave, Ottawa, ON K1N 6N5, Canada

Received October 02, 2015, in final form June 17, 2016; Published online June 26, 2016

Abstract
We investigate the skew-zigzag algebras introduced by Huerfano and Khovanov. In particular, we relate moduli spaces of such algebras with the cohomology of the corresponding graph.

Key words: zigzag algebra; path algebra; Dynkin diagram; moduli space; graph cohomology.

pdf (402 kb)   tex (25 kb)

References

  1. Assem I., Simson D., SkowroĊ„ski A., Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, Vol. 65, Cambridge University Press, Cambridge, 2006.
  2. Cautis S., Licata A., Heisenberg categorification and Hilbert schemes, Duke Math. J. 161 (2012), 2469-2547, arXiv:1009.5147.
  3. Cautis S., Licata A., Sussan J., Braid group actions via categorified Heisenberg complexes, Compos. Math. 150 (2014), 105-142, arXiv:1207.5245.
  4. Diestel R., Graph theory, Graduate Texts in Mathematics, Vol. 173, 4th ed., Springer, Heidelberg, 2010, available at http://diestel-graph-theory.com/.
  5. Huerfano R.S., Khovanov M., A category for the adjoint representation, J. Algebra 246 (2001), 514-542, math.QA/0002060.
  6. Kock J., Frobenius algebras and 2D topological quantum field theories, London Mathematical Society Student Texts, Vol. 59, Cambridge University Press, Cambridge, 2004.
  7. Rosso D., Savage A., A general approach to Heisenberg categorification via wreath product algebras, arXiv:1507.06298.
  8. Sunada T., Topological crystallography. With a view towards discrete geometric analysis, Surveys and Tutorials in the Applied Mathematical Sciences, Vol. 6, Springer, Tokyo, 2013.
  9. Zimmermann A., Representation theory. A homological algebra point of view, Algebra and Applications, Vol. 19, Springer, Cham, 2014.

Previous article  Next article   Contents of Volume 12 (2016)